The Higgs Sector in a $U(1)^{\prime}$ Extension of the MSSM

LEP2 (209 GeV) Higgsstrahlung Cross Section

- Motivations
- A (string-motivated) model
- Non-standard Higgs sector
- Nonstandard neutralino sector: CDM, $g_{\mu}-2$
- Nonstandard Higgs potential and CP breaking: Electroweak baryogenesis

References

- J. Erler, PL, and T. J. Li, hep-ph/0205001 (secluded sector)
- T. Han, B. McElrath, PL, hep-ph/0402064 (implications of Higgs sector)
- V. Barger, C. Kao, PL and H. S. Lee, hep-ph/0408120 (cold dark matter).
- V. Barger, C. Kao, PL and H. S. Lee, in preparation $\left(g_{\mu}-2\right)$
- J. Kang, T. Li, T. Liu, and PL, hep-ph/0402068 (electroweak baryogenesis)

Beyond the MSSM

Even if supersymmetry holds, MSSM may not be the full story

Most of the problems of standard model remain (hierarchy of electroweak and Planck scales is stabilized but not explained)
μ problem introduced

Could be that all new physics is at GUT/Planck scale, but there could be remnants surviving to TeV scale

Specific string constructions often have extended gauge groups, exotics

Important to explore alternatives/extensions to MSSM

Motivations for a Z^{\prime}

- Strings, GUTs, DSB, little Higgs, LED often involve extra Z^{\prime} (GUTs require extra fine tuning for $M_{Z^{\prime}} \ll M_{\text {GUT }}$)
- String models
- Extra $U(1)^{\prime}$ and SM singlets extremely common
- Radiative breaking of electroweak (SUGRA or gauge mediated) often yield $\mathrm{EW} / \mathrm{TeV}$ scale Z^{\prime} (unless breaking along flat direction \rightarrow intermediate scale)
- Breaking due to negative mass ${ }^{2}$ for scalar S (driven by large Yukawa) or by A term

- Solution to μ problem (string-motivated extension of NMSSM)

$$
W \sim h S H_{u} H_{d},
$$

- $U(1)^{\prime}$ may forbid elementary μ or term in Kähler
- $S=$ standard model singlet, charged under $U(1)^{\prime}$
$-\langle S\rangle$ breaks $U(1)^{\prime}, \mu_{\text {eff }}=h\langle S\rangle$
- Like NMSSM, but no domain walls (Alternative: nMSSM)
- Singlets don't have $W \sim \kappa S^{3}$ (cf. NMSSM) in constructions studied
- SM-singlets usually have $U(1)^{\prime}$ charges in constructions studied

Experiment

- Typically $M_{Z^{\prime}}>500-800$ GeV (Tevatron, LEP 2, WNC), $\left|\theta_{Z-Z^{\prime}}\right|<$ few $\times 10^{-3}$ (Z-pole)
- Discovery to $M_{Z^{\prime}} \sim 5-8 \mathrm{TeV}$ at LHC, LC
- Diagnostics to 1-2 TeV (asymmetries, y distributions, associated production, rare decays)

Models

- SUSY-breaking scale models (Demir et al)
$-M_{Z^{\prime}} \sim M_{Z}$, leptophobic
$-M_{Z^{\prime}} \gtrsim 10 M_{Z}$ by modest tuning
- Secluded sector models (Erler, PL, Li)
- Approximately flat direction, broken by small (~ 0.05) Yukawa
- Z^{\prime} breaking decoupled from effective μ term
- Four SM singlets: $S, S_{1,2,3}$, doublets $H_{1,2}$
- Off-diagonal Yukawas (string-motivated)
- Can be consistent with minimal gauge unification

$$
\begin{gathered}
\text { Superpotential : } \\
\text { Potential : } \begin{array}{c}
W=h S H_{1} H_{2}+\lambda S_{1} S_{2} S_{3} \\
V=V_{F}+V_{D}+V_{\text {soft }}
\end{array} \\
\begin{array}{c}
V_{F}=h^{2}\left(\left|H_{1}\right|^{2}\left|H_{2}\right|^{2}+|S|^{2}\left|H_{1}\right|^{2}+|S|^{2}\left|H_{2}\right|^{2}\right) \\
+\lambda^{2}\left(\left|S_{1}\right|^{2}\left|S_{2}\right|^{2}+\left|S_{2}\right|^{2}\left|S_{3}\right|^{2}+\left|S_{3}\right|^{2}\left|S_{1}\right|^{2}\right)
\end{array} \\
\begin{array}{l}
V_{D}=\frac{G^{2}}{8}\left(\left|H_{2}\right|^{2}-\left|H_{1}\right|^{2}\right)^{2} \\
+\frac{1}{2} g_{Z^{\prime}}^{2}\left(Q_{S}|S|^{2}+Q_{H_{1}}\left|H_{1}\right|^{2}+Q_{H_{2}}\left|H_{2}\right|^{2}+\sum_{i=1}^{3} Q_{S_{i}}\left|S_{i}\right|^{2}\right)^{2}
\end{array}
\end{gathered}
$$

where $G^{2}=g_{1}^{2}+g_{2}^{2}$,

$$
\begin{aligned}
V_{s o f t} & =m_{H_{1}}^{2}\left|H_{1}\right|^{2}+m_{H_{2}}^{2}\left|H_{2}\right|^{2}+m_{S}^{2}|S|^{2}+\sum_{i=1}^{3} m_{S_{i}}^{2}\left|S_{i}\right|^{2} \\
& -\left(A_{h} h S H_{1} H_{2}+A_{\lambda} \lambda S_{1} S_{2} S_{3}+\text { H.C. }\right) \\
& +\left(m_{S S_{1}}^{2} S S_{1}+m_{S S_{2}}^{2} S S_{2}+m_{S_{1} S_{2}}^{2} S_{1}^{\dagger} S_{2}+\text { H.C. }\right)
\end{aligned}
$$

$-\left\langle S_{i}\right\rangle \sim m_{S_{i}} / \lambda$ large for small λ

- Breaking along $D\left(U(1)^{\prime}\right) \sim 0$
- Smaller $\langle S\rangle,\left\langle H_{i}\right\rangle$, dominated by $h A_{h}: \tan \beta \sim 1,\langle S\rangle \sim\left\langle H_{i}\right\rangle$
- Large doublet-singlet mixing
- Two sectors nearly decoupled
- Mixed soft terms break two global symmetries
- Tree-level CP breaking in S, S_{i} sector in general (Important for baryogenesis; little effect on EDMs)

Nonstandard Higgs
 (T. Han, PL, B. McElrath)

- Complex Higgs, neutralino spectrum and decays, very different from MSSM and NMSSM because of small $\tan \beta$, mixing, and D terms
- 6 neutral scalars and 4 pseudoscalars
- Can have tree level CP breaking \Rightarrow mixing
- May separate into two sectors, one weakly coupled
- Often light scalars with significant doublet admixture, but reduced coupling due to singlet admixture; often light pseudoscalar
- Can have lightest Higgs up to $\sim 168 \mathrm{GeV}$ with all couplings perturbative to M_{P} because of D terms

$$
\begin{aligned}
M_{h}^{2} & \leq h^{2} v^{2}+\left(M_{Z}^{2}-h^{2} v^{2}\right) \cos ^{2} 2 \beta \\
& +2 g_{Z^{\prime}}^{2} v^{2}\left(Q_{H_{2}} \cos ^{2} \beta+Q_{H_{1}} \sin ^{2} \beta\right)^{2} \\
& +\frac{3}{4} \frac{m_{t}^{4}}{4} \operatorname{v} \boldsymbol{v}^{2} \pi^{2} \log \frac{m_{\tilde{t_{1}}} m_{\tilde{t_{2}}}}{m_{t}^{2}} .
\end{aligned}
$$

- Typically, $\tan \beta \sim 1-3$

ZZH Coupling relative to Standard Model

LEP2 (209 GeV) Higgsstrahlung Cross Section

LEP2 H A Cross Section

$$
\mathrm{M}_{\mathrm{H}} \text { vs. } \tan \beta
$$

Linear Collider (500 GeV)Higgsstrahlung Cross Section

- Wide range of spectra, including light or heavy H_{1}, A_{1}; usually light χ_{1}^{0}
- Complex neutralino spectrum (9 in model) (Implications for CDM, $\left.g_{\mu}-2\right)$
M_{H} vs. M_{A} by MSSM fraction

Charged Higgs Mass vs. A Masses

A-8. TYPICAL LIGHT $A_{1} \rightarrow$ INVISIBLE DOMINANT

$\tan \beta=1.08$		$M_{Z^{\prime}}=2831 \mathrm{GeV}$		$M_{H^{+}}=622 \mathrm{GeV}$		$\alpha_{Z Z^{\prime}}=2.7 \cdot 10^{-5}$				
M_{H}	116	564	629	2739	3077	8917				
$\xi_{\text {MSSM }}$	1	$1.9 \cdot 10^{-4}$	1	$4.3 \cdot 10^{-5}$	$1.3 \cdot 10^{-4}$	0				
$\sigma\left(H_{i} Z\right)$	58									
$\sigma\left(H_{i} \nu \bar{\nu}\right)$	88									
$\sigma\left(H_{i} e^{+} e^{-}\right)$	8.5									
M_{A}	78	621	3045	8916	0	0				
$\xi_{\text {MSSM }}$	$3.0 \cdot 10^{-4}$	1	$1.5 \cdot 10^{-4}$	0	1	$1.0 \cdot 10^{-4}$				
$\sigma\left(H_{1} A\right)$	$5.0 \cdot 10^{-6}$									
$M_{\chi^{0}}$	36	159	176	191	335	666	696	2236	3630	
$\xi_{\text {MSSM }}$	0.17	1	0.83	1	1	0	0	$5.2 \cdot 10^{-5}$	$4.1 \cdot 10^{-5}$	
$\xi_{\tilde{\tilde{z}}}$	0.83	$4.1 \cdot 10^{-4}$	0.17	$9.0 \cdot 10^{-4}$	0	1	1	0.63	0.38	
$\xi_{\tilde{Z}^{\prime}}$	0	0	0	0	0	$4.9 \cdot 10^{-3}$	$3.0 \cdot 10^{-3}$	0.37	0.62	
$M_{\chi^{+}}$	154	335								
\sim^{2}			\ldots	..		\ldots.				\ldots

- Many possible decay channels for light and heavy, including MSSMlike, Higgs, neutralino (invisible), cascade
- Usually $H_{1} \rightarrow \chi_{1}^{0} \chi_{1}^{0}$ or $A_{1} A_{1}$ when kinematically possible
- Also, $H \rightarrow b \bar{b}, \tau^{+} \tau^{-}, c \bar{c} ; H_{i} \rightarrow H_{j} H_{k}, A_{j} A_{k}$

Branching Ratios for dominant decay modes (greater than 1% excluding model-dependent squark, slepton, Z^{\prime} and exotic decays; $\chi_{i>1}^{0}$ are summed):

Conclusions

- Important to explore alternatives to MSSM
- Top-down string constructions very often contain extra Z^{\prime} and SM singlets S
- Elegant solution to μ problem (string-motivated extension of NMSSM)
- Many implications, including nonstandard Higgs (spectrum, couplings, decays, CP breaking), CDM, $g_{\mu}-2$, efficient EW baryogenesis, $B_{s}-\bar{B}_{s}$ mixing, rare B decays, neutrino masses
- But, must observe Z^{\prime}

> Cold Dark Matter
> (V. Barger, C. Kao, PL, H.-S. Lee)
$-0.09<\Omega_{\chi^{0}} h^{2}<0.15$

- MSSM: limited parameter space for sufficient LSP (co)annihilation; mainly bino in most of parameter space.
- $U(1)^{\prime}$: additional Z^{\prime}-ino and singlino. ((n)NMssm: additional singlino) \rightarrow may have enhanced annihilation coupling to Z
- Solutions compatible with observations for most $m_{\chi^{0}}$ (only examined for large Z^{\prime}-ino mass)

Muon $g_{\mu}-2$

(V. Barger, C. Kao, PL, H.-S. Lee)

- BNL E821: $a_{\mu}(\exp)=(11659208.0 \pm 5.8) \times 10^{-10}$
- 2.4σ deviation from its Standard Model (SM) prediction $\Delta a_{\mu} \equiv$ $a_{\mu}(\exp)-a_{\mu}(\mathrm{SM})=23.9(7.2)(3.5)(6) \times 10^{-10}$, assuming $e^{+} e^{-} \rightarrow$ hadrons value for hadronic vacuum polarization
- MSSM:

$$
\Delta a_{\mu}(\mathrm{SUSY}) \sim 13 \times 10^{-10} \frac{\tan \beta \operatorname{sign}(\mu)}{\left(M_{\mathrm{SUSY}} / 100 \mathrm{GeV}\right)^{2}}
$$

for common superpartner masses $M_{\text {susy }}$, favoring large $\tan \beta$ and/or small $M_{\text {susr }}$

- LEP2: $m_{\tilde{\mu}} \gtrsim 95 \mathrm{GeV}$
- Z^{\prime} diagrams small for allowed $M_{Z^{\prime}}$
- New Z^{\prime}-ino and singlino contributions in $U(1)^{\prime}$, and different parameter range
- Neutralino mass matrix in $\left\{\tilde{B}, \tilde{W}_{3}, \tilde{H}_{1}^{0}, \tilde{H}_{2}^{0}, \tilde{S}, \tilde{Z}^{\prime}\right\}$ basis

$$
\left(\begin{array}{cccccc}
M_{1} & 0 & -g_{1} v_{1} / 2 & g_{1} v_{2} / 2 & 0 & 0 \\
0 & M_{2} & g_{2} v_{1} / 2 & -g_{2} v_{2} / 2 & 0 & 0 \\
-g_{1} v_{1} / 2 & g_{2} v_{1} / 2 & 0 & -h_{s} s / \sqrt{2} & -h_{s} v_{2} / \sqrt{2} & g_{Z^{\prime}} Q^{\prime}\left(H_{1}^{0}\right) v_{1} \\
g_{1} v_{2} / 2 & -g_{2} v_{2} / 2 & -h_{s} s / \sqrt{2} & 0 & -h_{s} v_{1} / \sqrt{2} & g_{Z^{\prime}} Q^{\prime}\left(H_{2}^{0}\right) v_{2} \\
0 & 0 & -h_{s} v_{2} / \sqrt{2} & -h_{s} v_{1} / \sqrt{2} & 0 & g_{Z^{\prime}} Q^{\prime}(S) s \\
0 & 0 & g_{Z^{\prime}} Q^{\prime}\left(H_{1}^{0}\right) v_{1} & g_{Z^{\prime}} Q^{\prime}\left(H_{2}^{0}\right) v_{2} & g_{Z^{\prime}} Q^{\prime}(S) s & M_{1^{\prime}}
\end{array}\right)
$$

$\chi^{0}=\left\{\tilde{B}, \tilde{W}_{3}, \tilde{H}_{1}^{0}, \tilde{H}_{2}^{0}, \tilde{S}, \tilde{Z}^{\prime}\right\}$

$$
X=\{\tilde{T}=\tilde{H}-\}
$$

Adequate $g_{\mu}-2$ possible, even with small $\tan \beta$, consistent with $m_{\tilde{\mu}}$ constraints, while also giving observed CDM

Electroweak Baryogenesis

(J. Kang, PL, T. Li, T. Liu)

- Baryon asymmetry $n_{B} / n_{\gamma} \sim 6 \times 10^{-10}$
- Basic ideas worked out by Sakharov in 1967, but no concrete model
- Possible mechanisms
- Affleck-Dine baryogenesis
- GUT baryogenesis (wiped out by sphalerons for $B-L=0$)
- Leptogenesis
- Electroweak baryogenesis (Off the wall scenario: CP breaking in interactions with expanding bubble wall; sphalerons outside bubble)

Implementation of "off the wall"

Standard model: no strong first order phase transition for $M_{h}>$ 114.4 GeV; CP violation too small

Minimal supersymmetric extension (MSSM): small parameter space for light Higgs and light stop; new sources for CP violation

NMSSM (extension to include extra Higgs fields): can have strong first order for large $h A_{h} S H_{1} H_{2}$ but cosmological domain walls
nMSSM: strong transition without domain walls

Secluded sector $U(1)^{\prime}$:

- Symmetry breaking driven by large $h A_{h} S H_{1} H_{2}$
- Tree level CP breaking in Higgs sector associated with soft SM singlet terms
- New contributions to electric dipole moments negligible
- First phase transition breaks $U(1)^{\prime}$, second breaks $S U(2) \times U(1)$
- Phase transition strongly first order

Transition at $T_{c}=120 \mathrm{GeV}, \boldsymbol{v}\left(T_{c}\right) / T_{c}=1.31$

- For τ lepton use thin wall approximation (justified)
- For reasonable parameters, can obtain adequate asymmetry, even for large \tilde{t} mass, from τ alone

$$
\frac{n_{B}}{s}=-90 \gamma_{w}^{3}\left(1+\frac{v_{w}}{\left\langle v_{L}\right\rangle}\right) \frac{\xi_{L} m^{2} \delta \Delta \theta_{C P} h(\delta, T) \Gamma_{s}^{\prime}}{(2 \pi)^{4} v_{w} g_{*} T^{3}}
$$

- Larger contributions from neutralinos/charginos if not too heavy

$\gamma=$ explicit CP phase. Exp: $n_{B} / s \sim(0.8-0.9) \times 10^{-10}$.

