
EGEE is a project funded by the European Union under contract IST-2003-508833

First Latinamerican Grid Workshop
17 November 2004

www.eu-egee.org

Job Services

Elisabetta Ronchieri
INFN CNAF

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 2

Contents

•The Workload Management System
•Job Preparation

Job Description Language

•Job submission and job status monitoring
•WMS Matchmaking
•Different job types

 Interactive jobs
Checkpointable jobs
MPI jobs
DAG jobs

• APIs Overview

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 3

EGEE/LCG Workload Management
System

• The user interacts with Grid via a Workload Management Workload Management
System (WMS)System (WMS)

• The Goal of WMS is the distributed scheduling and
resource management in a Grid environment.

• What does it allow Grid users to do?
 To submit their jobs
 To execute them on the “best resources”

• The WMS tries to optimize the usage of resources

 To get information about their status
 To retrieve their output

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 4

Job Preparation

• Information to be specified when a job has to be submitted:
 Job characteristics
 Job requirements and preferences on the computing resources

• Also including software dependencies

 Job data requirements

• Information specified using a Job Description Language (JDL)
 Based upon Condor’s CLASSified ADvertisement language (ClassAd)

• Fully extensible language

• A ClassAd
– Constructed with the classad construction operator []

– It is a sequence of attributes separated by semi-colon (;).

• So, the JDL allows definition of a set of attribute, the WMS takes into
account when making its scheduling decision

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 5

Job Preparation

• An attribute is a pair (key, value), where value can be a Boolean, an
Integer, a list of strings,

 <attribute> = <value>;

• In case of literal string for values:
 if a string itself contains double quotes, they must be escaped with a

backslash
• Arguments = " \"Hello\" 10";

 the character “'” cannot be specified in the JDL
 special characters such as &, |, >, < are only allowed

• if specified inside a quoted string
• if preceded by triple \

– Arguments = "-f file1\\\&file2";

• Comments must be preceded by a sharp character (#) or have to follow the
C++ syntax

• The JDL is sensitive to blank characters and tabs
 they should not follow the semicolon (;) at the end of a line

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 6

Job Description Language

• The supported attributes are grouped in two
categories:
Job Attributes

• Define the job itself

Resources
• Taken into account by the RB for carrying out the matchmaking

algorithm (to choose the “best” resource where to submit the job)
• Computing Resource

– Used to build expressions of Requirements and/or Rank attributes by
the user

– Have to be prefixed with “other.”

• Data and Storage resources (see talk Job Services With Data
Requirements)

– Input data to process, SE where to store output data, protocols
spoken by application when accessing SEs

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 7

JDL: Relevant attributes

• JobType
 Normal (simple, sequential job), Interactive, MPICH, Checkpointable
 Or combination of them

• Executable (mandatory)
 The command name

• Arguments (optional)
 Job command line arguments

• StdInput, StdOutput, StdError (optional)
 Standard input/output/error of the job

• Environment (optional)
 List of environment settings

• InputSandbox (optional)
 List of files on the UI local disk needed by the job for running
 The listed files will automatically staged to the remote resource

• OutputSandbox (optional)
 List of files, generated by the job, which have to be retrieved

• VirtualOrganisation (optional)
 A different way to specify the VO of the user

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 8

JDL: Relevant attributes

• Requirements
 Job requirements on the resources
 Specified using GLUE attributes of resources published in the Information

Service
 Its value is a boolean expression
 Only one requirements can be specified

• if there are more than one, only the last one is taken into account

 If not specified, default value defined in UI configuration file is considered
• Default: other.GlueCEStateStatus == "Production" (the resource has to be able to

accept jobs and dispatch them on WNs)

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 9

JDL: Relevant attributes

• Requirements
 Other possible requirements values are below reported:

• other.GlueCEInfoLRMSType == “PBS” && other.GlueCEInfoTotalCPUs > 1 (the
resource has to use PBS as the LRMS and whose WNs have at least two CPUs)

• Member(“CMSIM-133”, other.GlueHostApplicationSoftwareRunTimeEnvironment)
(a particular experiment software has to run on the resource and this information is
published on the resource environment)

– The Member operator tests if its first argument is a member of its second
argument

• RegExp(“cern.ch”, other.GlueCEUniqueId) (the job has to run on the CEs in the
domain cern.ch)

• (other.GlueHostNetworkAdapterOutboundIP == true) && Member(“VO-alice-Alien”,
other.GlueHostApplicationSoftwareRunTimeEnvironment) && Member(“VO-alice-
Alien-v4-01-Rev-01”, other.GlueHostApplicationSoftwareRunTimeEnvironment)
&& (other.GlueCEPolicyMaxWallClockTime > 86000) (the resource must have
some packages installed VO-alice-Alien and VO-alice-Alien-v4-01-Rev-01 and the
job has to run for more than 86000 seconds)

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 10

JDL: Relevant attributes

• Rank
 Expresses preference (how to rank resources that have already met the

Requirements expression)
 It is expressed as a floating-point number
 The CE with the highest rank is the one selected
 Specified using GLUE attributes of resources published in the Information

Service
 If not specified, default value defined in the UI configuration file is considered

• Default: - other.GlueCEStateEstimatedResponseTime (the lowest estimated
traversal time)

• Default: other.GlueCEStateFreeCPUs (the highest number of free CPUs)

 Other possible rank value is below reported:
• (other.GlueCEStateWaitingJobs == 0 ? other.GlueCEStateFreeCPUs : -other.

GlueCEStateWaitingJobs) (the number of waiting jobs is used if this number is not
null and the rank decreases as the number of waiting jobs gets higher; if there are
not waiting jobs, the number of free CPUs is used)

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 11

Essential JDL

• At least one has to specify the following attributes:
 the name of the executable
 the files where to write the standard output and standard error of the

job
 the arguments to the executable, if needed
 the files that must be transferred from UI to WN and viceversa
[

Executable = “ls -al”;

StdError = “stderr.log”;

StdOutput = “stdout.log”;

OutputSandbox = {“stderr.log”, “stdout.log”};

]

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 12

Example of JDL file

[

JobType = “Normal”;

Executable = "$(CMS)/exe/sum.exe";

InputSandbox = {"/home/user/WP1testC","/home/file*”,
"/home/user/DATA/*"};

OutputSandbox = {“sim.err”, “test.out”, “sim.log"};

Requirements = (other. GlueHostOperatingSystemName
== “linux") && (other.GlueCEPolicyMaxWallClockTime >
10000);

Rank = other.GlueCEStateFreeCPUs;

]

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 13

Job Submission

 edg-job-submit [–r <res_id>] [-c
<config file>] [-vo <VO>] [-o <output
file>] <job.jdl>
-r the job is submitted directly to the computing element identified by

<res_id>

-c the configuration file <config file> is pointed by the UI instead of the
standard configuration file

-vo the Virtual Organisation (if user is not happy with the one
specified in the UI configuration file)

-o the generated edg_jobId is written in the <output file>
Useful for other commands, e.g.:
 edg-job-status –i <input file> (or edg_jobId)

-i the status information about edg_jobId contained in the <input file> are
displayed

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 14

Job Submission

UI
Network
Server

Job Contr.
CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 15

Job Submission

UI
Network
Server

Job Contr.
CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

UI: allows users to
access the functionalities
of the WMS
(via command line, GUI,
C++ and Java APIs)

Job
Status

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 16

Job Submission

UI
Network
Server

Job Contr.
CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

submitted

Job
Status

edg-job-submit myjob.jdl
Myjob.jdl

JobType = “Normal”;
Executable = "$(CMS)/exe/sum.exe";
InputSandbox = {"/home/user/WP1testC","/home/file*”, "/home/user/DATA/*"};
OutputSandbox = {“sim.err”, “test.out”, “sim.log"};
Requirements = other. GlueHostOperatingSystemName == “linux" &&
other.GlueCEPolicyMaxWallClockTime > 10000;
Rank = other.GlueCEStateFreeCPUs;

Job Description Language
(JDL) to specify job
characteristics and
requirements

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 17

Job Submission

UI
Network
Server

Job Contr.
CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

Job
Status

 RB
storage

waiting

submitted

Input
Sandbox
files

Job

NS: network daemon
responsible for accepting
incoming requests

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 18

Job Submission

UI
Network
Server

Job Contr.
CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

Job
Status

 RB
storage

waiting

submitted

WM: responsible to take
the appropriate actions to
satisfy the request

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 19

Job Submission

UI
Network
Server

Job Contr.
CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

Job
Status

 RB
storage

waiting

submitted

Match-
Maker/
Broker

Where must this
job be
executed ?

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 20

Job Submission

UI
Network
Server

Job Contr.
CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

Job
Status

 RB
storage

waiting

submitted

Match-
Maker/
Broker

Matchmaker: responsible
to find the “best” CE
where to submit a job

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 21

Job Submission

UI
Network
Server

Job Contr.
CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

Job
Status

 RB
storage

waiting

submittedMatch-
Maker/
Broker

Where are (which SEs)
the needed data ?

What is the
status of the

Grid ?

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 22

Job Submission

UI
Network
Server

Job Contr.
CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element Storage

Element

RB node

CE characts
& status

SE characts
& status

Job
Status

 RB
storage

waiting

submittedMatch-
Maker/
Broker

CE choice

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 23

Job Submission

UI
Network
Server

Job Contr.
CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

Job
Status

 RB
storage

waiting

submitted

Job
Adapter

JA: responsible for the final “touches”
to the job before performing submission
(e.g. creation of wrapper script, etc.)

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 24

Job Submission

UI
Network
Server

Job Contr.
CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

Job
Status

 RB
storage

JC: responsible for the
actual job management
operations (done via
CondorG)

submitted

waiting

ready

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 25

Job Submission

UI
Network
Server

Job Contr.
CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

CE characts
& status

SE characts
& status

Job
Status

 RB
storage

Job

Input
Sandbox
files

submitted

waiting

ready

scheduled

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 26

Job Submission

UI
Network
Server

Job Contr.
CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

Job
Status

 RB
storage

submitted

waiting

ready

scheduled

running

“Grid enabled”
data transfers/

accesses

Job

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 27

Job Submission

UI
Network
Server

Job Contr.
CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

Job
Status

 RB
storage

Output
Sandbox
files

submitted

waiting

ready

scheduled

running

done

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 28

Job Submission

UI
Network
Server

Job Contr.
CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element

Storage
Element

RB node

Job
Status

 RB
storage

submitted

waiting

ready

scheduled

running

done

edg-job-get-output <dg-job-id>

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 29

Job Submission

UI
Network
Server

Job Contr.
CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element Storage

Element

RB node

Job
Status

 RB
storage

submitted

waiting

ready

scheduled

running

done

Output
Sandbox
files

cleared

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 30

Job monitoring

UI

Log
Monitor

Logging &
Bookkeeping

Network
Server

Job Contr.
CondorG

Workload
Manager

Computing
Element

RB node

LM: parses CondorG log
file (where CondorG logs
info about jobs) and notifies LB

LB: receives and stores
job events; processes
corresponding job status

Log of
job events

edg-job-status <dg-job-id>
edg-job-get-logging-info <dg-job-
id>

Job
status

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 31

Possible job states

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 32

Job resubmission

• If something goes wrong, the WMS tries to
reschedule and resubmit the job (possibly on a
different resource satisfying all the requirements)

• Maximum number of resubmissions: min
(RetryCount, MaxRetryCount)
RetryCount: JDL attribute
MaxRetryCount: attribute in the “RB” configuration file

• e.g., to disable job resubmission for a particular
job: RetryCount=0; in the JDL file

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 33

Other (most relevant) UI commands

•edg-job-list-match
Lists resources matching a job description
Performs the matchmaking without submitting the job

• edg-job-cancel
Cancels a given job

• edg-job-status
Displays the status of the job

• edg-job-get-output
Returns the job-output (the OutputSandbox files) to the user

• edg-job-get-logging-info
Displays logging information about submitted jobs (all the events “pushed” by

the various components of the WMS)
Very useful for debug purposes

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 34

The Matchmaking algorithm

•The matchmaker has the goal to find the best suitable CE
where to execute the job

•To accomplish this task, the WMS interacts with the other
EGEE/LCG components (Replica location Service, and
Information Service)

•There are three different scenarios to be dealt with
separately:
•Direct job submission
• Job submission without data-access requirements
• Job submission with data-access requirements (see talk Job Services

With Data Requirements)

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 35

The Matchmaking algorithm: direct job
submission

•The user JDL contains a link to the resource to submit the job

•The WMS does not perform any matchmaking algorithm at all

•The job is simply submitted to the specified CE

IMPORTANT:

•If the CEId is specified then the WMS
• neither checks whether the user who submitted the job is authorised to

access the given CE, nor interacts with the RLS for the resolution of
files requirements, if any

•Only checks the JDL syntax, while converting the JDL into a ClassAd

•The user run the edg-job-submit –resource <ce_id>
<nome.jdl> command

ce_id = hostaname:port/jobmanager-lsf-grid01

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 36

The Matchmaking algorithm: job
submission without data access

requirements
•The user JDL contains some requirements

•Once the JDL has been received by the WMS and converted
in ClassAd, the WMS invokes the matchmaker

•The matchmaker has to find if the characteristics and status
of Grid resources match the job requirements

•There are two phases:
 Requirements check:

• The Matchmaker contacts the GOUT/II in order to create a set of
suitable CEs compliant with user requirements and where the user is
authorized to submit jobs

• The Matchmaker creates the set of suitable CEs
 Ranking phase:

• The Matchmaker contacts directly the LDAP (GRIS) server of the
involved CEs to obtain the values of those attributes that are in the rank
JDL expression

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 37

The Matchmaking algorithm: job
submission without data access

requirements
•The matchmaker can select a CE randomly, if there are two

or more CEs that meet all the requirements and have the
same rank

•In general, the CE with maximum rank value is selected

• IMPORTANT:
 The CE attributes involved in the JDL requirements refers to static

information
 All the information cached in the IS represent a good source for matches

among job requirements and CE features
 In the first phase it is more efficient to contact the GOUT/II, than querying

each CE
 The rank attributes refers to variable varying in time very frequently
 In the second phase it is more efficient to contact each suitable CE, rather

than using the GOUT/II as source of information

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 38

The Matchmaking algorithm: job
submission without data access

requirements
•The matchmaker can adopt a stochastic selection while

searching for the best matching CE, enabling fuzzyness in
the matchmaking algorithm

•The user has to set the JDL FuzzyRank attribute to true

•The rank value represents the probability that each CE has
to be selected as the best matching one

•The higher the probability is, the higher the rank value is

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 39

Interactive Job

• The Interactive job is a job whose standard streams are forwarded to the
submitting client

• OutBound connectivity is required between UI and WN

• The user has to set the JDL JobType attribute to interactive

• When an interactive job is submitted, the edg-job-submit command
 starts a Grid console shadow process in the background that listens on a port

assigned by the Operating System
 opens a new window where the incoming job streams are forwarded

• The DISPLAY environment variable has to be set correctly, because an
X window is open
 The generated X window shows Standard Error, Standard Output, Job

Identifier
 Via X window, the user can send Standard Input

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 40

Interactive Job

[

 JobType = "Interactive";

 Executable = "interactive.sh";

InputSandbox = "interactive.sh";

ListenerPort = 21000;

]

NOTE:
 The port can be forced through the ListenerPort attribute in the JDL
 It is not necessary to specify the OutputSandbox attribute in the JDL because

the output will be sent to the interactive window

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 41

Interactive Job

 Presents a Welcome message to
the user

Asks and waits for an input (the
user's name)

The user's name is shown back
The job finished

interactive.sh

Welcome!

What is your name?

$ Elisabetta

Bye Bye Elisabetta.

*INTERACTIVE JOB FINISHED

Standard Output

#!/bin/sh

echo "Welcome!"

sleep 1

echo "What is your name?"

read name

echo "Bye Bye $name"

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 42

Interactive Job

• The user can specify some options:
 --nogui

• makes the command provide a simple standard non-graphical
interaction with the running job

 --nolisten
• allows the user to interact with the job through her/his own tools

 --noint

• every interactive question to the user is skipped.

• All warning messages and errors are written to the file edg-job-
attach_<UID>_<PID>_<timestamp>.log file under /tmp directory
as default

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 43

Logical Checkpointing Job

• The Checkpointing job is a job that can be decomposed in
several steps

• In every step the job state can be saved in the LB and
retrieved later in case of failures

• The job state is a set of pairs <key, value> defined by the
user

• The job can start running from a previously saved state and
not from the beginning again

• The user has to set the JDL JobType attribute to
checkpointable

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 44

Logical Checkpointing Job

• When a checkpointable job is submitted and starts from the beginning,
the user run simply the edg-job-submit command
 the number of steps, that represents the job phases, can be specified by the

JobSteps attribute
• e.g. JobSteps = 2;

 the list of labels, that represents the job phases, can be specified by the
JobSteps attribute

• e.g. JobSteps = {“genuary”, “february”};

• The latest job state can be obtained by using the edg-job-get-chkpt
<jobid> command

• A specific job state can be obtained by using the edg-job-get-chkpt –cs
<state_num> <jobid> command

• When a checkpointable job has to start from an intermediate job state,
the user run the edg-job-submit command using the –chkpt <state_jdl>
option where <state_jdl> is a valid job state file, where the state of a
previously submitted job was saved

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 45

Other (most relevant) UI commands

•edg-job-attach
Starts an interactive session for previously submitted interactive jobs
Srarts a listener process on the UI machine

• edg-job-get-chkpt
Allows the user to retrieve one or more checkpoint states by a previously

submitted job

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 46

MPI Job

• There are a lot of libraries supporting parallel jobs, but we decided to
support MPICH.

• The MPI job is run in parallel on several processors

• The user has to set the JDL JobType attribute to MPICH and specify the
NodeNumber attribute that’s the required number of CPUs

• When a MPI job is submitted, the UI adds
 in the Requirements attribute

Member(“MpiCH”,
other.GlueHostApplicationSoftwareRunTimeEnvironment) (the
MPICH runtime environment must be installed on the CE)

other.GlueCEInfoTotalCPUs >= NodeNumber (a number of CPUs must be at
least be equal to the required number of nodes)

 In the Rank attribute
other.GlueCEStateFreeCPUs (it is chosen the CE with the largest number of free

CPUs)

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 47

MPI Job

[

 JobType = "MPICH";

 NodeNumber = 4;

 Executable = "MPItest.sh";

 Argument = "cpi 4";

 InputSandbox = {"MPItest.sh", "cpi"};

 OutputSandbox = "executable.out";

 Requirements = other.GlueCEInfoLRMSType == “PBS” ||
other.GlueCEInfoLRMSType == “LSF”;

]

• The NodeNumber entry is the number of threads of MPI job

• The MPItest.sh script only works if PBS or LSF is the local job manager
 If you want to submit your MPI programs you have to compile them against

MPICH library

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 48

MPI Job

[

 JobType = "MPICH";

 NodeNumber = 4;

 Executable = "MPItest.sh";

 Argument = "cpi 4";

 InputSandbox = {"MPItest.sh", "cpi"};

 OutputSandbox = "executable.out";

 Requirements = other.GlueCEInfoLRMSType == “PBS” ||
other.GlueCEInfoLRMSType == “LSF”;

]

• The first argument cpi is the binary to be executed

• The second one 4 represents the number of CPUs to be reserved for
parallel execution

• The MPItest.sh script sets the environment HOST_NODEFILE
 the path of a file that contains the list of WNs allocated for parallel execution

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 49

MPI Job: MPITest.sh

#!/bin/sh

this parameter is the binary to be
executed

EXE=$1

this parameter is the number of
CPU's to be reserved for parallel
execution

CPU_NEEDED=$2

prints the name of the master node

echo "Running on: $HOSTNAME"

echo "*******************************"

if [-f "$PWD/.BrokerInfo"] ; then

TEST_LSF=`edg-brokerinfo getCE | cut
-d/ -f2 | grep lsf`

else

TEST_LSF=`ps -ef | grep sbatchd | grep
-v grep`

fi

if ["x$TEST_LSF" = "x"] ; then

prints the name of the file containing
the nodes allocated for parallel
execution

echo "PBS Nodefile: $PBS_NODEFILE"

print the names of the nodes

cat $PBS_NODEFILE

echo "**********************************"

HOST_NODEFILE=$PBS_NODEFILE

else

print the names of the nodes

echo "LSF Hosts: $LSB_HOSTS"

loops over the nodes allocated for
parallel execution

HOST_NODEFILE=`pwd`/lsf_nodefile.$$

for host in ${LSB_HOSTS}

do

echo $host >> ${HOST_NODEFILE}

done

fi

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 50

MPI Job: MPITest.sh

echo "*******************************"
prints the working directory on the

master node

echo "Current dir: $PWD"

echo "********************************"

for i in `cat $HOST_NODEFILE` ; do

echo "Mirroring via SSH to $i"

creates the working directories on
all the nodes allocated for parallel
execution

ssh $i mkdir -p `pwd`

copies the needed files on all the
nodes allocated for parallel
execution

/usr/bin/scp -rp ./* $i:`pwd`

checks that all files are present on
all the nodes allocated for parallel
execution

echo `pwd`

ssh $i ls `pwd`

sets the permissions of the files

ssh $i chmod 755 `pwd`/$EXE

ssh $i ls -alR `pwd`

echo "@@@@@@@@@@@@@@@"

done

execute the parallel job with mpirun

echo "********************************"

echo "Executing $EXE"

chmod 755 $EXE

ls -l

mpirun -np $CPU_NEEDED -machinefile
$HOST_NODEFILE `pwd`/$EXE >
executable.out

echo "********************************"

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 51

MPI Job: Output

Process 0 of 4 on grid022.ct.infn.it

pi is approximately 3.1415926544231239, Error is
0.0000000008333307

wall clock time = 10.007429

Process 2 of 4 on grid020.ct.infn.it

Process 3 of 4 on grid026.ct.infn.it

Process 1 of 4 on grid021.ct.infn.it

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 52

What is a DAG

• DAG means Directed Acyclic Graph

• Each node represents a job

• Each edge represents a temporal
dependency between two nodes
 e.g. NodeC starts only after NodeA

has finished

• A dependency represents a
constraint on the time a node can
be executed
 Limited scope, it may be extended

in the future

• Dedendencies are represented as
“expression lists” in the ClassAd
language

dependencies = {

{NodeA, {NodeC, NodeD}},

{NodeB, NodeD},

{NodeB, NodeD}, NodeE}

}

Nod
eA

Nod
eB

Nod
eC

Nod
eD

Nod
eE

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 53

DAG Job

• The DAG job is a Directed Acyclic Graph Job

• The sub-jobs are scheduled only when the corresponding
DAG node is ready

• The user has to set the JDL JobType attribute to dag, nodes
attributes that contains the description of the nodes, and
dependencies attributes

NOTE:
 A plug-in has been implemented to map an EGEE DAG submission

to a Condor DAG submission
 Some improvements have been applied to the ClassAd API to better

address WMS need

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 54

DAG Job

nodes = {
 cmkin1 = [

 file = “bckg_01.jdl" ;
],

 cmkin2 = [
 file = “bckg_02.jdl" ;
],

 ……
 cmkinN = [

 file = “bckg_0N.jdl" ;
]

};
dependencies = {
 {cmkin1, cmkin2},
 {cmkin2, cmkin3},
 {cmkin2, cmkin5},
 {{cmkin4, cmkin5}, cmkinN}
}

cmk
in1

cmk
in4

cm
kin2

cmk
in5

cmk
inNcm

kin3

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 55

WMS APIs

• The WMS makes C++ and Java APIs available
for UI, LB consumer and client.
• In the following document:
 http://server11.infn.it/workload-grid/docs/DataGrid-01-TEN-0118-1_2.pdf

 details about the rpms containing the APIs are
given.
• Correspondent doxygen documentation can be
found in share/doc area. Ex.:
 $EDG_LOCATION/share/doc/edg-wl-ui-api-cpp-lcg2.1.49/html

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 56

WMS APIs

#include <iostream>
#include <string>

#include "edg/workload/logging/client/JobStatus.h"
#include "edg/workload/common/utilities/Exceptions.h"
#include "edg/workload/common/requestad/JobAd.h"
#include "edg/workload/userinterface/client/Job.h"

using namespace std ;
using namespace edg::workload::common::utilities ;
using namespace edg::workload::logging::client ;
/* **
 * Example based on edg-wl-job-submit.cpp, edg-wl-job-status.cpp
 * for further examples see also:

 http://isscvs.cern.ch:8180/cgi-
bin/cvsweb.cgi/workload/userinterface/test/?cvsroot=lcgware

 *
 * author: Heinz.Stockinger@cern.ch
 *
 * Example usage on GILDA:
 * ./workload Hello.jdl grid004.ct.infn.it 7772 grid004.ct.infn.it 9000
 *
 */

% ./workload Hello.jdl lxb0704.cern.ch 7772 lxb0704.cern.ch 9000

Additional examples
in CVS

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 57

WMS APIs

int main (int argc,char *argv[])
{

 cout << "Workload Management API Example " << endl;

 try{
 if (argc < 6 || strcmp(argv[1],"--help") == 0) {
 cout << "Usage : " << argv[0]

 << " <JDL file> <ns host> <ns port> <lbHost> <lbPort> [<ce_id>]"
 << endl;

 return -1;
 }

 edg::workload::common::requestad::JobAd jab;

 jab.fromFile (argv[1]) ;
 edg::workload::userinterface::Job job(jab);
 job.setLoggerLevel (6) ;

 cout << "Submit job to " << argv[2] << ":" << argv[3] << endl;
 cout << "LB address: "<< argv[4] << ":" << argv[5] << endl;
 cout << "Please wait..." << endl;

 // We now submit the job. If a CE is given (argv[6]), we send it directly
 // to the specified CE
 //
 if (argc ==6)
 job.submit (argv[2], atoi(argv[3]), argv[4], atoi(argv[5]), "") ;
 else
 job.submit (argv[2], atoi(argv[3]), argv[4], atoi(argv[5]), argv[6]) ;

 cout << "Job Submission OK; JobID= "
 << job.getJobId()->toString() << endl << flush ;

• The JobAd class
 provides users with
 management
 operations on JDL files
• We instantiate a Job
 object that corresponds
 to our JDL file and
 handles our job

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 58

WMS APIs

 // Print some detailed error information in case the job did not
 // succeed.
 //
 if ((status.status == 8) || (status.status == 9)) {
 printStatus(status);
 exit(-1);
 }

 // Now that the job has successfully finished, we retrieve the output
 //
 string outputDir = "/tmp";
 job.getOutput(outputDir);

 cout << "\nThe output has been retrieved and stored in the directory "
 << outputDir << endl;

 return 0;

 } catch (Exception &exc){
 cerr << "\nWMS Error\n";
 cerr << exc.printStackTrace();
 }
 return -1;
}

 The job
finished

 successfully.
We

 can retrieve
the

 output.

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 59

WMS APIs

 CC = gcc-3.2.2
GLOBUS_FLAVOR = gcc32

ARES_LIBS = -lares
BOOST_LIBS = -L/opt/boost/gcc-3.2.2/lib/release -lboost_fs \
 -lboost_thread -lpthread -lboost_regex
CLASSAD_LIBS = -L/opt/classads/gcc-3.2.2/lib -lclassad
EXPAT_LIBS = -lexpat
GLOBUS_THR_LIBS = -L/opt/globus/lib -lglobus_gass_copy_gcc32dbgpthr \
 -lglobus_ftp_client_gcc32dbgpthr -lglobus_gass_transfer_gcc32dbgpthr \
 -lglobus_ftp_control_gcc32dbgpthr -lglobus_io_gcc32dbgpthr \
 -lglobus_gss_assist_gcc32dbgpthr -lglobus_gssapi_gsi_gcc32dbgpthr \
 -lglobus_gsi_proxy_core_gcc32dbgpthr \
 -lglobus_gsi_credential_gcc32dbgpthr \
 -lglobus_gsi_callback_gcc32dbgpthr -lglobus_oldgaa_gcc32dbgpthr \
 -lglobus_gsi_sysconfig_gcc32dbgpthr \
 -lglobus_gsi_cert_utils_gcc32dbgpthr \
 -lglobus_openssl_gcc32dbgpthr -lglobus_proxy_ssl_gcc32dbgpthr \
 -lglobus_openssl_error_gcc32dbgpthr -lssl_gcc32dbgpthr \
 -lcrypto_gcc32dbgpthr -lglobus_common_gcc32dbgpthr

GLOBUS_COMMON_THR_LIBS = -L/opt/globus/lib -L/opt/globus/lib \
 -lglobus_common_gcc32dbgpthr
GLOBUS_SSL_THR_LIBS = -L/opt/globus/lib -L/opt/globus/lib \
 -lssl_gcc32dbgpthr -lcrypto_gcc32dbgpthr
VOMS_CPP_LIBS = -L/opt/edg/lib -lvomsapi_gcc32dbgpthr

all: workload

workload: workload.o
$(CC) -o workload \
-L${EDG_LOCATION}/lib -ledg_wl_common_requestad \

 –lpthread \
 -ledg_wl_userinterface_client \

-ledg_wl_exceptions -ledg_wl_logging \
 -ledg_wl_loggingpp \

-ledg_wl_globus_ftp_util -ledg_wl_util \
 -ledg_wl_common_requestad \

-ledg_wl_jobid -ledg_wl_logger -ledg_wl_gsisocket_pp \
-ledg_wl_checkpointing -ledg_wl_ssl_helpers \

 -ledg_wl_ssl_pthr_helpers \
$(VOMS_CPP_LIBS) \
$(CLASSAD_LIBS) $(EXPAT_LIBS) $(ARES_LIBS) \
$(BOOST_LIBS) \
$(GLOBUS_THR_LIBS) \
$(GLOBUS_COMMON_THR_LIBS) \
$(GLOBUS_SSL_THR_LIBS) \
workload.o

workload.o: workload.cpp
$(CC) -I ${EDG_LOCATION}/include \
-I/opt/classads/gcc-3.2.2/include -c workload.cpp

clean:
rm -rf workload workload.o

Makefile

First LatinAmerican Grid Workshop, Merida, Venezuela – Job Services – November 17, 2004
 - 60

Summary

• We explained the main functionality of the
Workload Management System
• The JDL file describes a user job
• A set of commands allow the user to get status
information and retrieve relevant data
• APIs are available in C++ and Java for UI, and
LB.
• We exercized the UI C++ APIs

