

Enabling Grids for E-sciencE

Site Access Control Arch (DJRA3.2)

David Groep
NIKHEF

www.eu-egee.org

- Timeline
- Positioning and scope
- Document structure
- Overview of Site Access Control Mechanisms

Timeline

- November 30th:
 RFC from the Joint Security Policy Group
- December 13th:
 RFC from ROC managers & MWSG
 Preview version to moderator & reviewers
- December 31st:
 Official 1st version, sent to reviewers Jan 3rd
- January 10th:
 Approved by the moderator & reviewers
 Version 1.0 (this version) released

Position of Site Access Control

Enabling Grids for E-sciencE

global issues

User policies VO policies

Establishing
Trusted Third Parties

Key storage MyProxy

site access control

2:AuthN

3:Local AuthZ

4:Isolation

5:Auditing 6:

6:Network

validating certificates

INFSO-RI-508833

Site policies VOMS-ACLs, blackls

virtualisation account mapping

logging auditing

connectivity provisioning

service business logic

System account creation workernode to headnode communications

Access control to individual files

•••••

Router port filtering DDoS protection

- Generic access control to services
 - Authentication
 - Authorization
 - for legacy applications & file access, networks, ...
- Sites are always in control of their resources
- Flexibility, scalability
- Allow for central control in a site
- Converge to a single policy format
- Standardization of configuration
- Address requirements from NA4, SAAA-RG, and others (incorporated in MJRA3.1 "user requirements")

Problem approach

Each chapter deals with a particular issue at three levels:

- Roadmap
 direction of the proposed solution regarding
 interoperability and sustainability of the solution
- EGEE architecture
 which part of the roadmap correspond to current
 requirements, and what part is achievable within the
 timeframe of the project.
- EGEE-1 release implementation if the implementation differs from the proposed architecture, this describes what is actually there

Where relevant, deployment considerations are given

Structure: high-level

Five main areas:

- Ch. 2: Authentication validation
 - certificates, trusted CAs,
 - interoperation with other AAIs & the e-IRG Roadmap,
 - dynamic federations,
 - use of MyProxy to bridge mechanisms
- Ch. 3: Local Authorization
 - site policy decision points (PDPs)
 - allow a VO and its groups, ban specific users, constrain user proxies,
 - interoperate with local access to mass stores

Structure: local fabric

Ch. 4: Isolation

- resource virtualization,
- account mapping & management of pool accounts

Ch. 5: Auditing

- what information is logged, deployment issues in logging
- keeping account history

Ch. 6: Network issues

- matching the site requirement 'no network access from worker nodes'
- with the user requirement for ubiquitous access from worker nodes
- Dynamic Connectivity

Authentication validation

Currently a common third-party trust federation: IGF

Roadmap

- allow interoperability with non-certificate-based systems (Shibboleth, EduRoam, RADIUS, GN2)
- scale better to large groups of identical users (students) and allow for easier attribute release policies (privacy preservation)

EGEE Architecture

- certificates, but use MyProxy if needed to bridge federations,
 e.g. using A-Select
- make certificate validation mode direct (OCSP) and simpler (RFC3820 proxies, standard OpenSSL/javax.security)
- allow checking mode extensions like policy OIDs
- EGEE-1: only move to standard TLS + RFC3820

Local Authorization

Roadmap

- all assertions carried as SAML statements
- all local (and global) policies expressed in XACML
- separate authorization service using standard protocols
- site policy, AND-ed with user and VO policy, evaluated together
- policy evaluation never requires special local privs (`root')

EGEE Architecture

- Authorization Framework (Java) and LCAS (C/C++ world)
- both provide set of PDPs
 (but slightly more PDPs will be there for the AuthZ FW)
- Authorization Service via OGSA-AuthZ-WG spec
- PDPs:
 - user white/blacklist, VOMS-ACL, Proxy-lifetime, OID checks, peer-system name validation, central CRL checking

Local Authorization in EGEE-1

Enabling Grids for E-science

EGEE-1 Implementation

- Only a limited set of PDPs:
 - ban/allow and VOMS-ACL
- Authorization interface is non-standard (C/C++)
- All evaluation is in-line:
 - source modifications needed to old services (GT gatekeeper, GridFTP server)
- No separate authorization service (no site-central checking)
- Policy format is not XACML everywhere (but GACL)

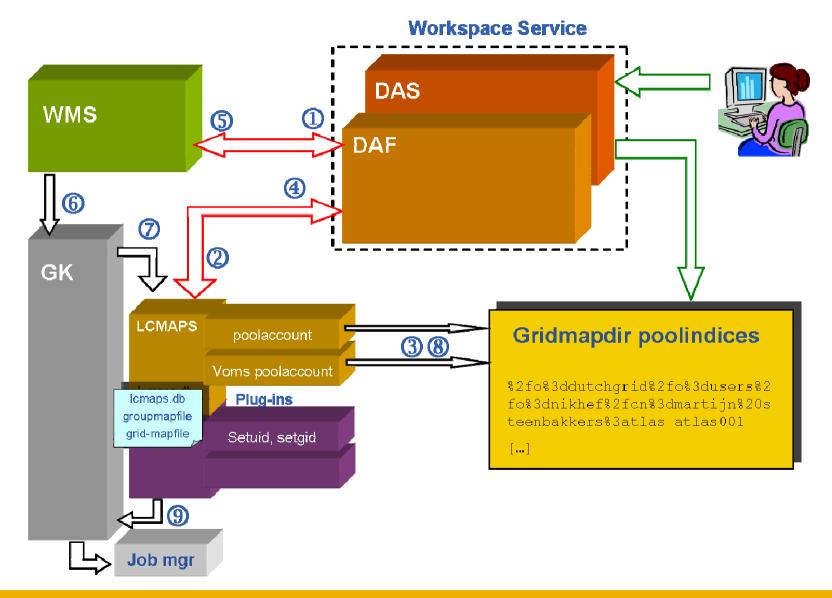
Isolation

Roadmap

- virtualization of resources (VM) or assigning of local credentials
- should be indistinguishable from 'outside'

EGEE Architecture

- only based on credential mapping
- do as little as possible with 'root' privileges: su-exec
- minimizing local management: poolaccounts & poolgroups
- credential mapping and manipulation: LCMAPS
- management capabilities on these accounts: WSS


EGEE-1 implementation

- LCMAPS and WSS available
- limited access control capabilities to the WSS (mapfile only)
- lightweight su-exec implemented by heavy-weight Gatekeeper

LCMAPS and the WSS

Enabling Grids for E-sciencE

System Integration components

Enabling Grids for E-science

Additional options for system integration

- NSS-grid
 - make regular commands (ls, top) show grid DNs
 - linked to credential mapping and auditing system
- grid-PAM
 - retrofit existing services with grid security
 - gsi-ssh, gsi-cvs, ...
- No explicit requirements within the project
- highly popular outside, with smaller installations
- SAC architecture should allow for these options
- no effort assigned until real requirement is there

Auditing

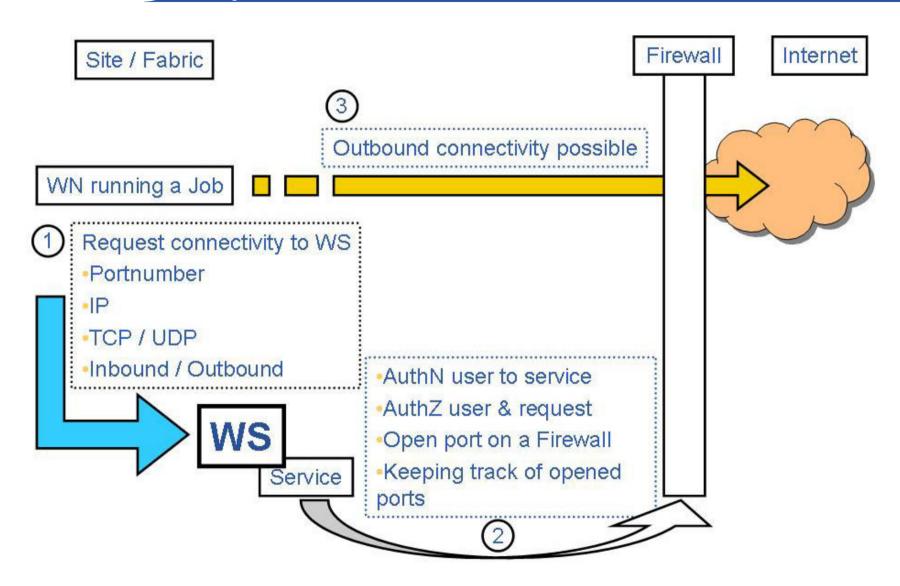
- Common logging (format) & reporting is a prerequisite but not yet defined for the middleware suite as a whole
- But a minimum must and will be provided
 - events are traceable through the system
 - storing audit trails left to conventional means (syslog)
 - deployment suggestion provided: secure syslogs
- Credential mapping repository: "JR"
 - linked to credential system LCMAPS and the JobManager (JR)
 - a version will be available

Network Considerations

Conflicting requirements

- Sites: worker nodes shall have no global connectivity
- Apps: worker nodes must have full connectivity

Proposed solution (JRA3 part)


- Dynamic Connectivity Service (DCS) "Site Proxy"
- policy-controlled connections to the outside world
- grid service interface, common (interface & development) with JRA4
- deployment scenario: dedicated boxes, flexible packet routing

Not in EGEE-1

DCS: logical workflow

Enabling Grids for E-sciencE

DJRA3.2 Site Access Control architecture

Roadmap

- sites must be in control and always secured
- users will not know they have single sign-on, but will complain if they don't have it
- large number of efforts world-wide to address this:
 AuthN and AuthZ are extremely active fields
- Roadmap takes these developments into account e-IRG Roadmap, GN2, Globus, initiatives in academia

EGEE architecture

aim for better mechanisms, but with consistency in mechanisms

EGEE-1

deployment of proven technology
 (but which had not been used before in LCG2 yet)

References

DJRA3.2: Site Access Control Architecture

https://edms.cern.ch/document/523948/

JRA3 Team (NIKHEF, UvA, KTH/PDC, UH/HIP, UiB) with help from JRA1 DM cluster (security) (CERN)