Distinguishing between MSSM and NMSSM via combined LHC and ILC analyses

Gudrid Moortgat-Pick (CERN)

in collaboration with *S. Hesselbach, F. Franke, H. Fraas*

CERN, 15/11/2004

- Introduction: the MSSM and the NMSSM
 - \rightarrow Gedankenexperiment
 - \rightarrow Gaugino/higgsino sector in both models
- Example NMSSM
 - \rightarrow Discrimination between the MSSM via LHC/ILC interplay
- Example MSSM

 \rightarrow Association of masses via LHC/ILC interplay

- Motivation for the use of the ${\rm LC}_{650}^{{\cal L}=1/3}$ option via LHC/ILC interplay
- Summary

Introduction

NMSSM (='MSSM'+ one Higgs singlet):

* Higgs singlet S needs also a Susy partner \tilde{S}

- \rightarrow now 5 neutralinos, mixtures of \tilde{B}^0 , \tilde{W}^0 , \tilde{H}^0_1 , \tilde{H}^0_2 and \tilde{S}
- * Higgs singlet coupling to gauge bosons strongly suppressed

What has been done so far?

- Higgs sector Drees'89, Ellis'89, Franke'95, Ellwanger et al.'95, 99, 00, 04, Choi'04, Han'04
- Neutralino sector phenomenology
- Strategies for model separation

Franke'95, Hesselbach'00, '01, Choi'04

GMP et al.'99 ($\tilde{\chi}_1^0, \tilde{\chi}_2^0$: polarisation effects)

Choi'et al 02 ($\tilde{\chi}_i^0$, i = 1, ..., 4: application of sumrules)

'Typical' NMSSM features: one $\tilde{\chi}_k^0 \sim \tilde{S}$

* small 'singlino' cross sections * small NLSP width if LSP= $\tilde{\chi}_1^0 \approx \tilde{S}$

 \rightarrow displaced vertices possible

* Higgs sector: S_1 may be very light, escaped LEP

Hesselbach '00

Ellwanger '02, Choi et al. '04

'Gedankenexperiment'

One believes that:

- probably the Higgs sector divides the models
- gaugino/higgsino sector leaves also unique hints for the model

But could it happen that:

- * the Higgs sectors are experimentally not distinguishable?
- * the light neutralino and charginos have same mass spectra in MSSM and NMSSM although rather large singlino admixture?
- * the corresponding cross section are also 'similar?'
- * the standard parameter strategies do not fail for the light spectrum?

How to proceed in that case?

Particle sectors in both models

MSSM:

- * Higgs sector h, H, A, H^{\pm} determined by $\tan \beta$ and m_A * Chargino sector $\tilde{\chi}_{1,2}^{\pm}$ determined by M_2 , μ , $\tan \beta$
- * Neutralino sector $\tilde{\chi}_{1,2,3,4}^{0}$ determined by M_1 , M_2 , μ , tan β

NMSSM (='MSSM'+ one Higgs singlet):

- * Higgs: $S_{1,2,3}$, $P_{1,2}$, $H_{1,2}^{\pm}$ determined by tan β , λ , x, κ , A_{λ} , A_{κ}
- * Chargino sector $\tilde{\chi}_{1,2}^{\pm}$ determined by M_2 , $\mu_{eff} = \lambda x$, $\tan \beta$
- * Neutralino sector $\tilde{\chi}^0_{1,2,3,4,5}$ determined by M_1 , M_2 , λ , κ , x, tan β
- \Rightarrow 'typical' NMSSM features: one $\tilde{\chi}_k^0 \sim \tilde{S}$
 - * small 'singlino' cross sections
 - * small NLSP width if LSP= $\tilde{\chi}_1^0 \approx \tilde{S}$
 - \rightarrow displaced vertices possible

- Hesselbach '00
- * Higgs sector: S_1 may be very light, escaped LEP Ellwanger '02, Choi et al. '04

Susy parameter determination in combined LHC/ILC analyses

ILC analysis at first stage with energy up to $\sqrt{s} = 500$ GeV:

- analyse and divide the model in separate blocks
- use only production of expected light ew particles $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$, $\tilde{\chi}_1^+$
- \rightarrow determine the fundamental parameters:

'U(1)'= M_1 , 'SU(2)'= M_2 , 'higgsino'= μ , 'Higgs vevs'=tan $\beta = v_2/v_1$

ightarrow prediction for $ilde{\chi}_3^0$, $ilde{\chi}_4^0$, $ilde{\chi}_2^\pm$

Procedure:

• Chargino mixing matrix depends on M_2 , μ , $\tan \beta$ diagonalised via two mixing angles $\cos 2\Phi_L$, $\cos 2\Phi_R$ \rightarrow observables: masses and cross sections

Choi, Kalinowski, GMP, Zerwas'01,'02

Choi et al '99,'00

- Neutralino mixing matrix depends on M_2 , μ , $\tan\beta$ and M_1
 - \rightarrow observables: masses and cross sections
- determination of these parameters including simulated errors for the scenario SPS1a (tan $\beta = 10$)!
 - \rightarrow combination of analytical step-by-step and fit procedure

Our strategy and assumptions for today:

Assumptions:

- we only measure the light Susy masses, e.g. $m_{\tilde{\chi}_{12}^0}$, $m_{\tilde{\chi}_{12}^\pm}$, $m_{\tilde{e}_{L,R}}$ =(240,220) GeV, $m_{\tilde{\nu}}$ =226 GeV
- we only measure $\sigma_{L,R}(e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0, \tilde{\chi}_1^+ \tilde{\chi}_1^-)$ at $\sqrt{s} = 400$, 500 GeV ($\rightarrow 650$ GeV)
- polarised beams with $P_{e^-} = \pm 90\%$, $P_{e^+} = \pm 60\%$ are available

Strategy:

- 1. We choose two scenarios, MSSM and NMSSM, with
 - \rightarrow similar masses
 - ightarrow similar cross sections although rather large $ilde{S}$ admixture
- 2. take into account 'realistic' 'experimental' uncertainties $\rightarrow \delta m \sim 1\%$, motivated by simulation for a 'similar' AMSB scenario (small $m_{\tilde{\chi}_1^\pm} m_{\tilde{\chi}_1^0}$)

C. Hensel

- 3. apply the 'usual' MSSM parameter strategy for BOTH scenarios
 - \rightarrow i.e. using 1. light charginos and 2. light neutralinos
 - \rightarrow derive the fundamental MSSM parameters
 - \rightarrow predict the heavier MSSM states
- 4. Verification/falsification of the predictions with analyses at the LHC
- 5. Feed-back from LHC
 - → motivation for using the low luminosity option $LC_{650}^{\mathcal{L}=1/3}$ of the ILC₅₀₀ (immediately possible at 500→ 650 GeV, no add. costs!)

Comparison of MSSM↔NMSSM scenario

	M_1	M_2	aneta	$\mu \ (\mu_{eff} = \lambda x)$	κ
NMSSM	360	147	10	457.5	0.2
MSSM	375	152	8	360	_

 \rightarrow points do respect all exp. bounds

GMP, Fraas, Franke, Hesselbach'04

Assumptions:

- we only measure the light Susy masses, e.g. $m_{ ilde{\chi}_{1,2}^0}$, $m_{ ilde{\chi}_1^\pm}$, $m_{ ilde{e}_{L,R}}$, $m_{ ilde{
 u}}$
- we only measure $\sigma_{L,R}(e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0, \tilde{\chi}_1^+ \tilde{\chi}_1^-)$ at $\sqrt{s} = 400$, 500 GeV (\rightarrow 650 GeV)
- polarised beams with $P_{e^-}=\pm90\%$, $P_{e^+}=\pm60\%$ are available

derived mass spectra:

	$ ilde{\chi}_1^{\pm}$	$ ilde{\chi}^\pm_2$	$ ilde{\chi}_1^0$	$ ilde{\chi}^{0}_{2}$	$ ilde{\chi}_{ extsf{3}}^{ extsf{0}}$	$ ilde{\chi}_{ t 4}^{ t 0}$	$ ilde{\chi}_5^0$
NMSSM	139	474	138	337	367	468	499
MSSM	139	383	138	344	366	410	_

 \Rightarrow masses are rather close

 $\Rightarrow \text{ at } \sqrt{s} = 500 \text{ GeV: only } \tilde{\chi}_1^0 \tilde{\chi}_2^0, \ \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} \text{ pairs can be produced} \\ \text{ at } \sqrt{s} = 400 \text{ GeV: only } \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} \text{ accessible} \end{cases}$

Chargino cross sections in MSSM and NMSSM

1. Step: Chargino production at $\sqrt{s} = 400$ and 500 GeV

$\sqrt{s} = 400 \text{ GeV}$	$\sigma^{NMSSM}(e^+e^- ightarrow { ilde\chi_1^\pm} { ilde\chi_1^\mp})/{ ext{fb}}$	$\sigma^{MSSM}(e^+e^- ightarrow { ilde\chi_1^\pm} { ilde\chi_1^\mp})/{ ext{fb}}$
unpolarised beams	323.9±1.8±8.3	314.8±1.8±7.9
$P(e^{-}) = -90\%, P(e^{+}) = +60\%$	984.0±3.1±25.2	956.5±3.1±24.0
$P(e^{-}) = +90\%, P(e^{+}) = -60\%$	$13.6 \pm 0.4 \pm 0.4$	$13.0 \pm 0.4 \pm 0.4$
$\sqrt{s} = 500 \text{ GeV}$		
unpolarised beams	$287.5 \pm 1.7 \pm 4.2$	$276.4 \pm 1.7 \pm 3.9$
$P(e^{-}) = -90\%, P(e^{+}) = +60\%$	873.9±3.0±12.5	839.7±2.9±11.9
$P(e^{-}) = +90\%, P(e^{+}) = -60\%$	11.7±0.3±0.2	$11.6 \pm 0.3 \pm 0.2$

 \Rightarrow Errors that are taken into account:

first number: 1 σ stat. error on $\mathcal{L} = 100$ fb⁻¹ (per polarisation configuration)

second number: error due to $\delta m_{\tilde{\chi}_1^\pm} \approx 1\%$

 δP and $\delta m_{\tilde{\nu}}$, $\delta m_{\tilde{e}_L}$ neglible

Desch et al. '04

- \Rightarrow cross sections rather similar within the experimental uncertainties
 - \rightarrow no immediate MSSM \leftrightarrow NMSSM distinction expected (although different μ !)
- \Rightarrow But the chargino sector is not the crucial point...

Neutralino cross sections in MSSM and NMSSM

Neutralino production at $\sqrt{s} = 500 \text{ GeV}$

$\sqrt{s} = 500 \text{ GeV}$	$\sigma^{NMSSM}(e^+e^- ightarrow ilde{\chi}_1^0 ilde{\chi}_2^0)/{ m fb}$	$\sigma^{MSSM}(e^+e^- ightarrow ilde{\chi}_1^0 ilde{\chi}_2^0)/{ m fb}$
unpolarised beams	4.0±0.4	<mark>3.9</mark> ±0.4
$P(e^{-}) = -90\%, P(e^{+}) = +60\%$	$12.1{\pm}1.0$	$11.7{\pm}1.0$
$P(e^{-}) = +90\%, P(e^{+}) = -60\%$	$0.2{\pm}0.1$	$0.2{\pm}0.1$

 \Rightarrow Errors that are taken into account:

1 σ stat. error on $\mathcal{L} = 100$ fb⁻¹, all others neglible

 \Rightarrow neutralino cross sections very similar!

What are the mixing characters?

NMSSM							MSSN	Λ			
$ ilde{\chi}^{O}_i$	$ ilde{B}^{0}$	$ ilde W^{O}$	$ ilde{H}^{0}_{a}$	$ ilde{H}^{O}_b$	$ ilde{S}$		$ ilde{\chi}^{0}_i$	$ ilde{B}^{0}$	$ ilde W^{O}$	$ ilde{H}^{0}_{a}$	$ ilde{H}^{0}_{b}$
$ ilde{\chi}_1^0$	0.1%	94.7%	1.2%	3.5%	0.5%	-	$ ilde{\chi}_1^0$	0.1%	91.2%	2.6%	6.1%
$ ilde{\chi}^{0}_{2}$	39.0%	2.0%	11.3%	4.8%	42.9%		$ ilde{\chi}_2^0$	51.3%	4.7%	26.7%	17.3%
$ ilde{\chi}_{ extsf{3}}^{ extsf{0}}$	56.4%	0.2%	1.4%	0.0%	42.0%		$ ilde{\chi}_{ extsf{3}}^{ extsf{0}}$	0.1%	1.0%	38.3%	60.6%
$ ilde{\chi}_{ extsf{4}}^{ extsf{0}}$	0.1%	0.7%	39.7%	58.9%	0.6%		$ ilde{\chi}_{ extsf{4}}^{ extsf{0}}$	48.4%	3.2%	32.5%	15.9%
$ ilde{\chi}_5^0$	4.4%	2.4%	46.4%	32.8%	14.0%						
\Rightarrow pr	etty larg	${e}$ \tilde{S} com	ponent ir	ו $ ilde{\chi}^0_2$							

G. Moortgat-Pick

Parameter determination within assumed uncertainties

Start with NMSSM scenario and apply MSSM strategy:

- a) Chargino sector: observables $m_{\tilde{\chi}_1^{\pm}}$, $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)|_{400,500}$ leads to:
 - $\begin{array}{ll} M_2/{\rm GeV}{=}147.7{\pm}5.3 & M_2^{th}{=}147 \,\, {\rm GeV} \\ 370 < \mu/\,\, {\rm GeV} & \mu_{eff} = 458 \,\, {\rm GeV} \\ 1 < \tan\beta & \tan\beta^{th} = 10 \end{array}$

 \rightarrow rather good M_2 , but μ , tan β very weak (expected since $\rightarrow \tilde{\chi}_1^{\pm} \sim \tilde{W}$)

- b) Neutralino sector: observables $\sigma(\tilde{\chi}_1^0 \tilde{\chi}_2^0)|_{500}$ and $m_{\tilde{\chi}_1^0}$ and/or $m_{\tilde{\chi}_2^0} \Rightarrow M_1$: \rightarrow use one of $m_{\tilde{\chi}_i^0}$ to determine M_1
 - if $m_{\tilde{\chi}_1^0}$ used $\Rightarrow M_1 < -330$ negativ! \Rightarrow not consistent with cross section!

Parameter determination within assumed uncertainties

I) Chargino sector: observables $m_{\tilde{\chi}_1^{\pm}}$, $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)|_{400,500}$ II) Neutralino sector: observables $\sigma(\tilde{\chi}_1^0\tilde{\chi}_2^0)|_{500}$ and $m_{\tilde{\chi}_{12}^0}$

With these observables one obtains:

$M_1/\text{GeV}{=}355{\pm}20$	M_1^{th} =360 GeV
$M_2/\text{GeV}=148\pm5$	M_2^{th} =147 GeV
$\mu/{\rm GeV}{=}[480,900]$	$\mu_{eff} =$ 458 GeV
1 < aneta	$ aneta^{th}=$ 10

- \Rightarrow rather large uncertainty in M_1 and μ , tan β very weak, but were we worry about it?
- \Rightarrow Would you claim, that the wrong model has been applied?

How to find a possible inconsistency?

 \Rightarrow predict heavier particles and let them find from LHC

Predictions, consistent with parameter tuples:

$$m_{{ ilde \chi}_3^0}/{
m GeV}> 480 \ m_{{ ilde \chi}_4^0}/{
m GeV}> 500 \ m_{{ ilde \chi}_2^\pm}/{
m GeV}> 500$$

 \Rightarrow all heavier neutralinos/chargino larger than 480 GeV!

- Could LHC measure the masses and confirm the model?
- \rightarrow heavy gauginos may be reconstructed in decay chains:
- ⇒ Since $\tilde{\chi}_3^0 \sim 43\%(\tilde{H},\tilde{S})$ –like, but $\tilde{\chi}_4^0 \sim 99\%$ (\tilde{H},\tilde{S})–like and even $\tilde{\chi}_5^0 \sim 93\%$ (\tilde{H},\tilde{S})–like

 \rightarrow probably only $\tilde{\chi}_3^0$ observable in cascades and perhaps – if lucky – also $\tilde{\chi}_5^0$.

 \Rightarrow we assume that $\delta m^{\rm LHC}_{\tilde{\chi}^0_3}\sim 2\%$ (prelim.): $m_{\tilde{\chi}^0_3}=367\pm7~{\rm GeV}$

 \Rightarrow obvious contradiction with ILC prediction $(m_{\tilde{\chi}^0_3} > 480 \text{ GeV})!$

Motivation for using a further ILC option

- use subsequently higher energy but low luminosity ILC option: $ILC_{650}^{\mathcal{L}=1/3}$
- \rightarrow production cross sections [fb] for heavier $\tilde{\chi}_1^0 \tilde{\chi}_i^0$ pairs and also $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^{\pm}$:

$\sqrt{s} = 650 \text{ GeV}$	$\sigma(e^+e^- ightarrow { ilde\chi}^0_1 { ilde\chi}^0_3)$	$\sigma(e^+e^- ightarrow { ilde\chi}^0_1 { ilde\chi}^0_4)$	$\sigma(e^+e^- ightarrow { ilde\chi}^0_1 { ilde\chi}^0_5)$	
unpolarised	12.2 ± 0.6	5.5±0.4	$0.02{\pm}0.02$	
$P(e^{-}) = -90\%, P(e^{+}) = +60\%$	36.9±1.1	14.8±0.7	0.07±0.04	
$P(e^{-}) = +90\%, P(e^{+}) = -60\%$	0.6±0.1	2.2±0.3	0.01±0.02	

$\sqrt{s} = 650 \text{ GeV}$	$\sigma(e^+e^- ightarrow ilde{\chi}_1^\pm ilde{\chi}_2^\mp)$
unpolarised	2.4±0.3
$P(e^{-}) = -90\%, P(e^{+}) = +60\%$	5.8±0.4
$P(e^{-}) = +90\%, P(e^{+}) = -60\%$	1.6±0.2

- \rightarrow only statistical error given based on $\mathcal{L}/3 = 100/3$ fb⁻¹ for each configuration.
- \Rightarrow at least $\tilde{\chi}_3^0$, $\tilde{\chi}_4^0$ and $\tilde{\chi}_2^{\pm}$ accessible!

expected: masses (e.g. $m_{\tilde{\chi}_3^0}$!) and rates precisely measureable

 \Rightarrow With LHC+ILC^{L=1/3}₆₅₀: strong evidence if deviations from MSSM! GMP,Franke,Fraas,Hesselbach'04

application of more general fits will probably nail down the NMSSM

G. Moortgat-Pick

b) Further application: apply MSSM strategy on MSSM scenario

Again: $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ at $\sqrt{s} = 400$ and 500 GeV and $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ at $\sqrt{s} = 500$ GeV

I) Chargino sector: observables $m_{\tilde{\chi}_1^{\pm}}$, $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)|_{400,500}$ leads to:

$M_2/\text{GeV}=153.0\pm5.2$	$M_2^{th} = 152 { m GeV}$
$\mu = [340, 600]$	$\mu=$ 360 GeV
$\tan \beta > 1$	$ aneta^{th}=8$

II) Neutralino sector: observables $\sigma(\tilde{\chi}_1^0 \tilde{\chi}_2^0)|_{500}$ and $m_{\tilde{\chi}_1^0}$ and/or $m_{\tilde{\chi}_2^0} \Rightarrow M_1$:

 $\begin{array}{ll} M_1/{\rm GeV}{=}370{\pm}20 & M_1^{th}{=}375 \ {\rm GeV} \\ M_2/{\rm GeV}{=}151{\pm}4 & M_2^{th}{=}152 \ {\rm GeV} \\ \mu/{\rm GeV}{=}[340{,}580] & \mu_{eff}{=}360 \ {\rm GeV} \\ 1 < \tan\beta & \tan\beta^{th}{=}8 \end{array}$

 \Rightarrow results seem to be rather promising!

MSSM scenario: which help could come from LHC?

We assume – analogous to the former study in SPS1a: Desch et al. '04

- $\tilde{\chi}^0_3 \sim 99\% \tilde{H}\text{-like}$ will not be accessible at the LHC
- However, $\tilde{\chi}_4^0 \sim 48\% \tilde{H}$ only, so, there are good chances.

Same game as before with heavy gauginos – mass predictions from LC studies:

 $m_{\tilde{\chi}_{3}^{0}}/\text{GeV} = [360,505]$ $m_{\tilde{\chi}_{4}^{0}}/\text{GeV} = [405,540]$ $m_{\tilde{\chi}_{2}^{\pm}}/\text{GeV} = [380,520]$

 \rightarrow we assume that the LHC can measure/identify (as in SPS1a)

Polesello'04

a gaugino particle with

 $\hat{m}_{\tilde{\chi}^0_i} = 410 \pm 8 \text{ GeV}$ (again 2% uncertainty assumed)

('maybe even better!', confirmed by Giacomo last week)

How to know that it is $\tilde{\chi}_4^0$?

⇒ Play with both possibilities, determine the parameters, predict the masses and check it experimentally

Further motivation for $\text{LC}_{650}^{\mathcal{L}=1/3}$ in the MSSM example

1. Assuming measured particle is $\hat{m}_{\tilde{v}_{i}^{0}} = m_{\tilde{v}_{i}^{0}}$:

$$\Rightarrow \text{ this assumption leads to the predictions} \\ m_{\tilde{\chi}_4^0}/\text{GeV} = 439 \pm 9 \text{ and } m_{\tilde{\chi}_2^\pm}/\text{GeV} = 425 \pm 10 \\ m_{\tilde{\chi}_4^0}^{th}/\text{GeV} = 410 \text{ and } m_{\tilde{\chi}_2^\pm}^{th}/\text{GeV} = 383 \\ \end{aligned}$$

- 2. Assuming measured particle is $\hat{m}_{\tilde{\chi}_{i}^{0}} = m_{\tilde{\chi}_{4}^{0}}$: \Rightarrow this assumption leads to the predictions $m_{\tilde{\chi}_{3}^{0}}/\text{GeV} = 370 \pm 15$ and $m_{\tilde{\chi}_{2}^{\pm}}/\text{GeV} = 385 \pm 15$ $m_{\tilde{\chi}_{3}^{0}}^{th}/\text{GeV} = 366$ and $m_{\tilde{\chi}_{2}^{\pm}}^{th}/\text{GeV} = 383$
- → in both cases sufficient motivation to use $LC_{650}^{\mathcal{L}=1/3}$ → immediate model verfication/falsification

 \Rightarrow LHC \leftrightarrow LC interplay crucial for model determination and searches outline!

Summary: Promising 'hand-in-hand' LHC/ILC procedures!

- Susy (as an example for tricky new physics searches) greatly benefits from synergy of combined LHC and ILC₅₀₀ analyses
- LHC/ILC₅₀₀ combined analysis: precise ('loop level') Susy parameter determination without assuming a specific Susy breaking scheme!
- Today: Discrimination between MSSM↔NMSSM
 → no separation if only Higgs sector or only light gaugino/higgsino sector
- Gain in 'model-independence' via combined analsis:
 - \rightarrow Analysis of light states at LC leads to predictions of heavier masses
 - \rightarrow Measuring/identification of heavier masses at the LHC
 - \rightarrow Comparison leads to verification/falsification of the model
 - \rightarrow Motivation to use immediately low lumi option of $\text{LC}_{650}^{\mathcal{L}=1/3}$
- Combined LHC/ILC analysis:
- \rightarrow better prepared for the 'unexpected'!

App:Typical features of the AMSB Susy breaking scenarios

Allanach. 0208214

C. Hensel, Thesis, '02

Lester'99

AMSB feature: small mass difference $\delta m_{(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)}$ between $\tilde{\chi}_1^0$ and $\tilde{\chi}_1^{\pm}$:

 \rightarrow tricky scenario for LHC

if $\delta m_{({ ilde \chi}_1^\pm,{ ilde \chi}_1^0)} <$ 200 MeV no problem

if 200MeV $< \delta m_{(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)} < 2$ GeV: tricky due to softly emitted particles

and large background

assuming AMSB relations and specific cuts: resolvable

 \rightarrow simulation for the LC exist

 $\delta m_{(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)}$ measureable at per cent level

 \Rightarrow AMSB scenario may be perfectly suited for combined LHC/LC analyses!

Mixing characteristics in the neutralino sector:

- inversion: lightest $\tilde{\chi}_1^0 \sim \tilde{W}$ determined mainly by M_2 $\tilde{\chi}_2^0 \sim \tilde{B}$ determined mainly by M_1
- lightest chargino $\tilde{\chi}_1^{\pm} \sim \tilde{W}$ determined by M_2 (as 'usual') heavy chargino $\tilde{\chi}_2^{\pm} \sim \tilde{H}$ determined by μ ('as usual')