G4 Validation using CMS HCAL Test Beam

V. Daniel Elvira

LCG validation meeting

LCG, Feb 4th 2004

Motivation

- Validation of GEANT4-OSCAR
- Understanding of the successive Hcal test beam experiments (02,03,04)

Use OSCAR_2_4_5 (G4.5.2), LHEP-3.6, QGSP-2.7 (HcalTB02 has been released as an OSCAR2 example)

- Beam Line System (trigger tiles & wire chambers)
- ECAL box (Crystal Matrix sub-system)
- HCAL Barrel
- HO
- Allow translation & rotation of both BL & ECAL box
- Root analysis package

Angle view of the full TB02 detector

> 100 GeV pion

Side view of the eCal & HB sections of the TB02 detector

100 GeV pion

LCG, Feb 4th 2004

Readout (signal) Simulation

In principle, the pulse is integrated in two time slices:

But due to lack of clock synchronization, the position of the peak is not known with respect to time slices — the whole pulse, 4 time slices, is integrated in TBO2 (time info lost)

• <u>Calibration</u>: Add up the scintillator energy in a $\eta \times \phi = 5 \times 5$ super-tower (like in the TB experiment). Calibration factor is $E_{ini}/E_{5\times5}$ taken from 50 GeV π on tower (η,ϕ)=(9,4) in an HB only configuration.

50 GeV pions deposit 425 MeV in a 5x5 HCAL supertower about the (9,4) central: 0.85%

Calibration factor is: 117.7

•<u>Response</u>: with respect to 50 GeV for 20-300 GeV π (linerarity)

• <u>Resolution</u>: determine energy resolution as the width of the calibrated super-tower energy distribution.

LCG, Feb 4th 2004

OSCAR2 TB02 Simulation: Changes since last time (end of 2003) results

OSCAR-2_4_5 with default cuts in range, LHEP-3.6 /QGSP-2.7 physics lists, XTALS+HB+HO

- <u>Shoot</u> on the right tower (4,9)
- <u>HB Layer 1 energy</u> modified to *weight* the same as layers 2-16
- HB Layer 1 thickness modified to match TB configuration (Max: 7.45 cm Min: 3.8 cm

Noise constribution modified:

Noise

in HB

Elect. Noise, pulse E^{ECal} tower + 115 MeV * Rand matching to measured electron resolution Long. Non-uniformity (?) Elect. Noise (4 time slices, was 2 before) V. Daniel Elvira

EHB EHB scint + 0.1* EHB scint MeV * Rand HB tower + 524 MeV * Rand

LCG, Feb 4th 2004

tower

FECal

Performance Studies

Based in a beam of π^- events onto crystal 25 (central) and the $(\eta,\phi)=(9,4)$ tower of the HB. Pion beams: 20, 30, 50, 100, 300 GeV.

Response Functions

How do I define resolution? Initially, fit a Gaussian function to the distributions because that's what was done with the data.

LCG, Feb 4th 2004

Response Functions

Plan to compare both Gaussian and RMS extracted resolutions in data and simulation – have only σ for now

TB02 Data Analysis: Linearity & σ_E/E

Measure (TBO2) energy resolution and linearity for 20, 30, 50, 100, 300 GeV pions. Sources of systematic uncertainties:

- Backgrounds (muons, electrons) <u>large effect at low energy</u> cuts in (E_{HCal}, E_{ECal}) space: nominal, high, low.
- HCal calibration from 50 GeV MIP in ECAL <u>small</u>
 - ECAL/HCAL energy "mix":
 - Background in 50 GeV distribution
 - $\Delta < \mu > = \sigma / sqrt(10,000) = \sigma / 100$

 $E_{HB} + E_{ECal} = E_{Tot}$

 Choice of HCal calibration point - <u>It's not an uncertainty but</u> part of the calorimeter tuning

resolution depends on the calibration "point" due to HCal non-linearities LCG, Feb 4th 2004

Bkgnd subtraction (20 GeV)

No cuts: double Gaussian gives upper limit)

Pion Energy Resolution

Syst. Data $\sigma_{\rm F}/{\rm E}(\%)$ stat bkgnd calib E 20. 26.22 0.15 5.00 01 30. 21.76 0.12 3.00 0.2 50. 17.40 0.10 0.2 0.60 03 100. 12.95 0.07 0.400.3 300. 8.55 0.05 0.00

Syst. Errors 100% correlated in Energy, uncorrelated with each other (added in quadrature)

Excellent agreement in resolution (LHEP a little higher than QGSP)

Pion Energy Linearity

OSCAR245 (LHEP-3.6, QGSP-2.7)

Conclusions

- Simulation now runs under OSCAR245, it is part of the official release, and includes more accurate electronics noise, layer 1 thickness & energy weight, more modern physics lists.
- Data analysis includes systematic uncertainties to allow validation.

Validation studies (resolutions, linearity) using LHEP-3.6 & QGSP-2.7 (TB02-OSCAR245) are completed.

Longitudinal and transverse profiles will soon be generated for comparison with the upcoming HCAL TB 2004 experiment (longitudinal profiles and as low as 2 GeV pions).

Still need to take a look at σ versus RMS resolutions and tune a χ^2 test analysis package (for when we have low energy pions and smaller systematic uncertainties).