
Alice off-line meetingAlberto Colla Cern, October 3, 2005

The new AliRoot DB access classes

Alice off-line meeting
Cern, October 3, 2005

Alberto Colla
(Alice off-line Calibration and Alignment grup)

Alice off-line meetingAlberto Colla Cern, October 3, 2005

Summary

• History

• Underlying principles

• New features (wrt first publication, June 2005)

• Description of the CDB access classes

• Examples of use cases

Alice off-line meetingAlberto Colla Cern, October 3, 2005

“History” of DB access classes

• Original idea and first implementation by T. Kuhr (late 2004)

• Since February 2005: work on the framework implementation is

carried out in the core offline group

• First presentation of the prototype to the off-line community: June

2005 Alice off-line meeting

• Development performed taking into account the many and useful

discussions with software and detector experts which followed

the publication of the prototype

Alice off-line meetingAlberto Colla Cern, October 3, 2005

Underlying philosophy

• Calibration and alignment objects are Root TObjects stored into Root files

• Calibration and alignment objects must be run dependent objects

• The Alice offline calibration and alignment framework provides the software
infrastructure for storage and access to the experiment condition data

• Database is read-only (automatic versioning tools)

• The framework provides storage and access into Grid and local environment

• Storage and retrieval technique is transparent to the user

Alice off-line meetingAlberto Colla Cern, October 3, 2005

New features (Introduction)

• New manager class AliCDBManager

Handles activation and deactivation of one or more storage system
Owns the instances of the active storages

• Implementation of the Grid storage access class AliCDBGrid

• “Factory” and “Parameter” classes associated to each specific storage

Used by the manager to activate storage locations
Storage systems are identified by a string (“uri”) or set of parameters

• New versioning schema introduced

Two version numbers: “Grid” version and “local” (sub)version

• Object's container class (AliCDBEntry) and object's metadata classes
have been redesigned

Alice off-line meetingAlberto Colla Cern, October 3, 2005

Software requirements

• AliRoot HEAD

• Root v5-04-00

• For Grid access: Alice VO registration, AliEn client (gShell)

• AliCDB* classes are in STEER:

AliCDBManager
AliCDBStorage
AliCDBGrid, AliCDBLocal, AliCDBDump
AliCDBEntry
AliCDBId
AliCDBMetaData

Alice off-line meetingAlberto Colla Cern, October 3, 2005

CDB access classes schema

AliCDBManager
<<singleton>>

AliCDBStorage

AliCDBGrid AliCDBLocal AliCDBDump

AliCDBFactory AliCDBParam

AliCDBGridFactory
AliCDBGridParam

Framework proposed
and mainly developed by

Boyko Yordanov

AliCDBEntry

TObject AliCDBId AliCDBMetaData
AliCDBPath

version, subVersion

AliCDBRunRange

AliCDBLocalFactory
AliCDBLocalParam

AliCDBDumpFactory
AliCDBDumpParam

Alice off-line meetingAlberto Colla Cern, October 3, 2005

CDB access classes relationships

AliCDBManager

AliCDBXXXFactory

GetStorage

Put/Get AliCDBGrid/Local/Dump

PutEntry/GetEntry
AliCDBEntry

DataBase
(Root files)

AliCDBStorage

AliCDBXXXParam

Storage activation
Object storage/retrieval

Alice off-line meetingAlberto Colla Cern, October 3, 2005

• History

• Underlying principles

• New features (wrt first publication, June 2005)

• Description of the CDB access classes

• Examples of use cases

Summary

Alice off-line meetingAlberto Colla Cern, October 3, 2005

AliCDBEntry

• Container class. It has:

The calibration or alignment object (anything inheriting from TObject)
The object's identifier (AliCDBId)
The object's metadata (AliCDBMetaData)

• Remember: Each AliCDBEntry contains a single object (which can be a
container of more objects). It is identified by a name (path) and its validity is
specified by a run range and a version.

• Some public AliCDBEntry methods:
SetObject(TObject*), TObject* GetObject()
SetId(const AliCDBId&), AliCDBId& GetId()
SetMetaData(AliCDBMetaData*),

AliCDBMetaData* GetMetaData()
SetOwner(Bool_t), Bool_t IsOwner()

SetOwner sets AliCDBEntry object as the owner of the TObject and
AliCDBMetaData objects (so that they are deleted with AliCDBEntry)

Alice off-line meetingAlberto Colla Cern, October 3, 2005

AliCDBId

• Contains the set of the object's metadata which uniquely identifies it
(path, run validity range, versions)

• It has two purposes:

During storage it is used to build the location (e.g. directory path, file
name) where the object will be stored
During retrieval it is used to identify the object and, if needed, to

specify the required version

• Data members:

AliCDBPath fPath: the object's path
AliCDBRunRange fRunRange: the object's validity range
Int_t fVersion, Int_t fSubVersion: the object's Grid and local versions
TString fLastStorage: “previous” storage location of the object (new, grid,

local, dump). It is set at first storage and during object's retrieval and helps to “backtrace”
the object's history.

Alice off-line meetingAlberto Colla Cern, October 3, 2005

AliCDBPath, AliCDBRunRange

• AliCDBPath contains the object's path name (TString fPath)
• The path must have a three-level directory structure:

“level0/level1/level2”
• Example: “ZDC/Calib/Pedestals”
• Wildcard character * allowed if path is used to specify selection criteria

or for multiple object retrieval (e.g. “ZDC/*” or “TPC/Calib/*” ...)

• AliCDBRunRange contains the run validity range of the object
(Int_t fFirstRun, Int_t fLastRun)

• AliCDBId contains public getter/setters for path, run numbers, versions ...

Alice off-line meetingAlberto Colla Cern, October 3, 2005

AliCDBMetaData

• Contains the set of the object's metadata not used for storage/retrieval

• Data members and getter/setters for:

Object's class name (TString)
Responsible's name (TString)
AliRoot version used for the object (TString)
Beam period number (UInt_t)
Comment string (TString)
TMap of any additional set of “properties”:

TMap format: (const char* property, TObject* object)
Getter function to get the metadata object associated to “property”:

TObject* GetProperty(const char* property)

see also: RemoveProperty(…), PrintMetaData()

Alice off-line meetingAlberto Colla Cern, October 3, 2005

AliCDBManager

• Singleton (AliCDBManager::Instance())
• Owner of the activated storage object instances

• holds:
List of the registered factories (3 available storage factories:
Dump, Local, Grid).
List (TMap) of active storages (storage object instances created with
AliCDBManager::GetStorage())

• Factory registration is hard-coded; it is done at the first call of
AliCDBManager::Instance()

AliCDBGridFactory is registered only if Root is enabled for AliEn access
If Grid factory is not registered the corresponding storage cannot be activated
(null AliCDBStorage pointer returned)

Alice off-line meetingAlberto Colla Cern, October 3, 2005

AliCDBManager (2)

• GetActiveStorages() returns list of active storages
• Public methods added to select single “default storage” and “drain storage”

(see later)
• Destroy() method deletes AliCDBManager instance and all the active storages

• To activate a new storage instance use AliCDBManager method GetStorage:

AliCDBStorage* GetStorage(const char* dbString);

AliCDBStorage* GetStorage(const AliCDBParam* param);

Storage type “URI”

Set of parameters
identifying the storage

Returns pointer to the active
instance of AliCDBStorage

Alice off-line meetingAlberto Colla Cern, October 3, 2005

AliCDBStorage

• Interface for the concrete storage types (Dump, Local, Grid)

• Public virtual functions to store/retrieve objects:

Bool_t Put(AliCDBEntry* entry);

Bool_t Put(object, Id, MetaData)

AliCDBEntry* Get(const AliCDBId& query)

AliCDBEntry* Get(“path”, runNumber, version, subVersion)

TList* GetAll(const AliCDBId& query)

TList* GetAll(“path”, runNumber, …)

Single request

Multiple request

Alice off-line meetingAlberto Colla Cern, October 3, 2005

AliCDBStorage (2)

• During retrieval, AliCDBId query is used to specify:
The path of the requested object (wildcards allowed for multiple requests)
The run number
Optionally, the version and subversion (highest version search
if not specified)

• Possibility to specify a list of “selection criteria” has been mantained:
Void AddSelection(const AliCDBId& selection)

Void AddSelection(“path”, firstRun, lastRun, version,

subVersion)

See also: RemoveSelection(...), RemoveAllSelections(),
PrintSelectionList()

Alice off-line meetingAlberto Colla Cern, October 3, 2005

AliCDBGrid

• U.r.i. pattern: “alien://host:port;user;DBPath;SE”
Example:
“alien://aliendb4.cern.ch:9000;colla;DBFolder;ALICE::CERN::se01”

If DBFolder is not a full path it is created from the home directory

• AliCDBGridParam members: fHost, fPort (UInt_t), fUser, fDBPath, fSE (TString)

• Access class to an object stored into a Grid database
• Based on the Root TGrid/Talien plugin, uses gliteUI libraries

• One single AliCDBEntry stored in each TAlienFile:

level1 level2 level3 Run#fr_#lr_v#gv.rootDBFolder

Grid
DBFolder

Run1_10_v0.root
Run11_20_v0.root
Run21_v0.root
Run22_30_v0.root
...

TPC Pedestals

ZDC Calib Gains

Align...

...

...

Alice off-line meetingAlberto Colla Cern, October 3, 2005

AliCDBLocal

• U.r.i. pattern: “local://DBPath”
If DBPath is not a full path it is created from the working directory

• AliCDBLocalParam member: fDBPath

• Access class to an object stored into a local database

• One single AliCDBEntry stored in each local root file:

level1 level2 level3 Run#fr_#lr_v#gv_s#lv.rootDBFolder

Local
DBFolder

Run1_10_v0_s0.root
Run1_10_v0_s1.root
Run11_20_v1_s0.root
Run11_20_v1_s1.root
...

TPC Pedestals

ZDC Calib Gains

Align...

...

...

Alice off-line meetingAlberto Colla Cern, October 3, 2005

AliCDBDump

• U.r.i. pattern: “dump://fileName(;ReadOnly)”
If fileName is not a full path the file is created/opened in the working directory
If ReadOnly is specified the file is opened in read-only mode

• AliCDBDumpParam member: fDBPath, Bool_t fReadOnly

• Access class to an object stored into a “dump” local file

• All the AliCDBEntry objects stored in the dump root file:

Run1_10_v0_s0
Run1_10_v0_s1
Run11_20_v1_s0
Run11_20_v1_s1
...

TPC Pedestals

ZDC Calib Gains

Align...

...

...

Local
DumpFile.root:

TDirectory TKey name

Alice off-line meetingAlberto Colla Cern, October 3, 2005

New versioning schema

• Object version is automatically set during storage

• Two version numbers: the first one stands for “Grid version”, the second
(subVersion) stands for “Local version”

• Example:

Run1_10_v0_s0.root

Local Grid

New object stored

Run1_10_v0_s1.root

Run1_10_v0_s2.root
Local updates

Run1_10_v1.root Grid transfer

Run1_10_v2.root

Run1_10_v3.root

Grid updates
Run1_10_v3_s0.rootLocal transfer

Run1_10_v3_s1.root

...
Error is returned if someone tries
to transfer the same object from
Grid to local more than once
(protection against mess)

Alice off-line meetingAlberto Colla Cern, October 3, 2005

Summary

• History

• Underlying principles

• New features (wrt first publication, June 2005)

• Description of the CDB access classes

• Examples of use cases

Alice off-line meetingAlberto Colla Cern, October 3, 2005

Activation of new storage locations

• Using the storage's URI

AliCDBManager *man = AliCDBManager::Instance();

AliCDBStorage *storGrid = man->GetStorage
(“alien://aliendb4.cern.ch:9000;colla;DBFolder;ALICE::CERN::se01”);

AliCDBStorage *storLoc = man->GetStorage(“local:///work/DBFolder”);

• Using the AliCDBParam class

AliCDBGridParam param
(“aliendb4.cern.ch”,9000,”colla”,”DBFolder”,”ALICE::CERN::se01”);

AliCDBStorage *storGrid =

AliCDBManager::Instance()->GetStorage(¶m);

Alice off-line meetingAlberto Colla Cern, October 3, 2005

Object storage

// some code to create the TObject *object

...

// set object's path and run validity range in AliCDBId

AliCDBId id(“ZDC/Calib/Pedestals”,1,10);

// Set additional object's metadata

AliCDBMetadata md;

md.Set... //fill metadata using AliCDBMetaData setters

// Put object into the database

storLoc->Put(object, id, &md);

path runRange

Object stored into local file:
DBFolder/ZDC/Calib/Pedestals/Run1_10_v0_s0.root

Alice off-line meetingAlberto Colla Cern, October 3, 2005

Object retrieval

AliCDBEntry *entry;

entry = storLoc->Get(“ZDC/Calib/Pedestals”,5);

entry = storLoc->Get(“ZDC/Calib/Pedestals”,5,2);

entry = storLoc->Get(“ZDC/Calib/Pedestals”,5,2,4);

// Get Id, metaData, object from entry

AliCDBId id = entry->GetId();

AliCDBMetadata *md = entry->GetMetaData();

ObjClass *obj = entry->GetObject();

run

Look for highest version
& subVersion

Look for version 2
& highest subVersion

Look for version 2
& subVersion 4

• Single object retrieval

TList *list; // list will contain AliCDBEntry obj's

list = storLoc->GetAll(“ZDC/Calib/*”,5);

entry = (AliCDBEntry*) list->At(0);

• Multiple object retrieval

AliCDBEntry must be cast!

Alice off-line meetingAlberto Colla Cern, October 3, 2005

Object retrieval (2)

• Object retrieval using AliCDBStorage “selection criteria” methods:

// I want version 2 for all “ZDC/Calib/*” obj's for runs 1 to 100

storLoc->AddSelection(“ZDC/Calib/*”,1,100,2)

// and version 1_0 for “ZDC/Calib/Pedestals” obj's for runs 5-10

storLoc->AddSelection(“ZDC/Calib/Pedestals”,5,10,1,0)

TList *list = storLoc->GetAll(“ZDC/*”,5)

• “General” selection criteria (“ZDC/*”) should be added before more specific ones!

Alice off-line meetingAlberto Colla Cern, October 3, 2005

Default and Drain storages

AliCDBManager::Instance()->SetDefaultStorage(const char* “uri”);

AliCDBManager::Instance()->SetDefaultStorage(AliCDBParam* param);

AliCDBManager::Instance()->SetDefaultStorage(AliCDBStorage* sto);

AliCDBManager::Instance()->SetDrain(const char* “uri”);

AliCDBManager::Instance()->SetDrain(AliCDBParam* param);

AliCDBManager::Instance()->SetDrain(AliCDBStorage* sto);

• Among the active AliCDBStorage objects collected by AliCDBManager, one can
choose two as the “default” and “drain” storages:

If the storage instance is not present in the collection it is created and added to it
The first created storage instance is automatically set as the default storage

AliCDBManager::Instance()->RemoveDefaultStorage();

AliCDBManager::Instance()->RemoveDrain();

• Removal of default and drain storages (objects aren’t removed from list of active storages!)

Alice off-line meetingAlberto Colla Cern, October 3, 2005

Use of default and drain storages

• The pointer to the default storage is returned by:

AliCDBManager::Instance()->GetDefaultStorage();

• If the drain storage is activated, each entry retrieved from any storage is put into it:

AliCDBManager *man = AliCDBManager::Instance();

man->GetStorage(“alien://...”); // this is the default storage

man->SetDrain(“dump://DBDrain.root”); // this is the drain storage

AliCDBEntry *entry;

entry = man->GetDefaultStorage()->Get(“ZDC/Calib/Pedestals”,5);

Retrieved entry is drained into dump file!

• To check the activation of the default and drain storage pointers:
(Bool_t) AliCDBManager::Instance()->IsDefaultStorageSet();

(Bool_t) AliCDBManager::Instance()->IsDrainSet();

Alice off-line meetingAlberto Colla Cern, October 3, 2005

For further examples...

• Run tutorial macro macros/DBAccessTutorial.C

It requires AliEn access! If AliEn is not enabled in Root, replace the alien
storage activation with a local “dummy” one ...

• Follow today's “live” tutorial!

Alice off-line meetingAlberto Colla Cern, October 3, 2005

Proposal of a new storage schema

• New storage schema proposed by Boyko Yordanov which optimizes
time efficiency of storage and retrieval processes

• Current implementation:

Every set of objects with same name (e.g. “ZDC/Calib/Pedestals”) is stored
in the same location (“linearly”), regardless of their versions:

ZDC/Calib/Pedestals:

Run0_10_v1.root
Run0_10_v2.root
Run11_20_v1.root
...

For a modified object (new version), it is necessary to iterate over the
already existing ones to get the version number.
The same number of iterations is needed for automatic data retrieval
(highest version)

Alice off-line meetingAlberto Colla Cern, October 3, 2005

New data storage idea
• For a new object (e.g. ZDC/Calib/Pedestals): new branch, and for every

version new sub-branch with the same name as the version number

• The “leaves” are the objects (files, root keys etc.) with name determined by
the run range (and possibly the version still appended for clarity)

• Taking into account that for a given version there is no overlapping run
ranges, we can order them

• This structure allows for less iterations in most of the cases thanks to the
additional version branch and “Binary Tree” optimization.

example: ZDC/Calib/Pedestals/1/
Run0_10_v1.root
Run11_20_v1.root
...

ZDC/Calib/Pedestals/2/
Run0_10_v2.root
...

Alice off-line meetingAlberto Colla Cern, October 3, 2005

Performance tests
• Sequential run range storage (no overlapping):

This test stores and retrieves values for particular object increasing run range every time
by one. There is only one version number. With the “current” method put/get time
depends on the number of files. With the “New” method put/get time is constant.

Alice off-line meetingAlberto Colla Cern, October 3, 2005

Performance tests (2)
• Random run range storage (overlapping):

This test stores and retrieves values of particular object with random run range. Run range
is overlapping and version number increases. With the “Current” method put/get time
depends on the size of DB. With the “New” method put/get time is constant.

