Alignment and Calibration of ALICE TRD

status as of October 2005
D. Miśkowiec, GSI Darmstadt
(3) TRD from the alignment/calibration point of view
(8) summary of the parameters
(2) alignment strategy
(3) alignment exercise

Transition Radiation Detector from the alignment/calibration point of view

TRD = 18 supermodules (SM)
1 SM = 5 chamber stacks
1 stack $=6$ chambers
total 540 chambers

Transition Radiation Detector alignment/calibration parameters

TRD calibration and alignment parameters

540	chamber x, y, z	cm
540	chamber dx,dy,dz	mrad
1.2 e 6	pad drift velocity	relative
1.2 e 6	pad T0	timebin
1.2 e 6	pad gain	relative
1.2 e 6	pad ADC pedestal	ADC count

TRD calibration and alignment parameters

540	chamber x,y,z	cm
540	chamber dx,dy,dz	mrad
1.2 e 6	pad drift velocity	relative
1.2 e 6	pad T0	timebin
1.2 e 6	pad gain	relative
1.2 e 6	pad ADC pedestal	ADC count
540	chamber drift velocity	cm / timebin
540	chamber drift T0	timebin

TRD calibration and alignment parameters

90	stack x, y, z	cm
90	stack dx,dy,dz	mrad
540	chamber x,y,z	cm
540	chamber dx,dy,dz	mrad
1.2 e 6	pad drift velocity	relative
1.2 e 6	pad T0	timebin
1.2 e 6	pad gain	relative
1.2 e 6	pad ADC pedestal	ADC count
540	chamber drift velocity	cm / timebin
540	chamber drift T0	timebin

TRD calibration and alignment parameters

90	stack x, y, z	cm	after each B change
90	stack dx,dy,dz	mrad	after each B change
540	chamber $\mathrm{x}, \mathrm{y}, \mathrm{z}$	cm	month-year
540	chamber dx,dy,dz	mrad	month-year
1.2 e 6	pad drift velocity	relative	week-year
1.2 e 6	pad T0	timebin	week-year
1.2 e 6	pad gain	relative	day
1.2 e 6	pad ADC pedestal	ADC count	day
540	chamber drift velocity	cm / timebin	hour
540	chamber drift T0	timebin	hour

alignment strategy

a) rough knowledge of geometry (nominal design values)
b) relative alignment of the 6 chambers within a stack by cosmics
c) relative alignment of the 6 chambers within a stack in a $B=0$ run
d) alignment of the stack in respect to the TPC in a $B=0$ run
e) alignment of the stack in respect to the TPC in a $B>0$ run

cosmics vs. $B=0$ calibration runs at LHC

cosmics
100-200 tracks $/ \mathrm{m}^{2} / \mathrm{s}$
one stack at a time

initial hardware test practice alignment procedure get a rough alignment
calibration $\mathrm{B}=0$ runs
1000-2000 tracks $/ \mathrm{m}^{2} / \mathrm{s}$ all stacks simultaneously

ultimate alignment

alignment exercise (September 2005)

AliSimulation::RunSimulation

RunSDigitization

TRD.SDigits

RunDigitization

TRD.Digits

AliReconstruction.Run

next steps

(®3) store additional variables: 6 residua of local TRD track
(3) store additional variables: 6 residua of global track
(2) misaligner (shifts hits?)
(6) aligner (based on residua, finds the needed shifts)
© ${ }^{\text {© }}$ practice misalign-align
© ${ }^{\text {C }}$ use the official tools and storage

summary

(大) we think we know our parameters (some of them we may leave unused, though)
(8) we know how to align and calibrate (residua need to be stored, though)
(8) storing in / retrieving from the database is likely to be the laborious part...

Transition Radiation Detector mean pulse height profile

