Misalignment in the TPC simulation and reconstruction

C. Cheshkov 3/10/2005

ALICE offline week

Contents

- Introduction
- TPC alignment model
- Coordinate system definitions
- Misalignment in the TPC simulation
- Retrieving of misalignment data from TGeo
- Introduction of misalignment in TPC digitization
- TPC tracking using alignment data
- Tracking coordinate system definition
- Implementation inside TPC tracker code
- General ideas for barrel tracking using alignment data
- Conclusions

Introduction - TPC alignment model

- In TPC we consider 'allignable' only the 72 readout chambers:
- 3 rotation angles + 3 translations per chamber
- For the moment, the electric field in the drift volume is assumed to be exactly orthogonal (and uniform) to the chambers plane

Coordinate system definitions

- 'Sector" (or 'ideal') coordinate system:
- Origin and Z axis coincide with the origin and Z axis of the global coordinate system
- In XY plane it is rotated by $\alpha=10^{\circ}+i \times 20^{\circ}$
where 'ip' is the sector index

- The magnetic field is parallel to the X axis!

Coordinate system definitions

- 'Chamber' coordinate system:
- Connected to actual (misaligned) position of readout chambers
- X axis orthogonal to pad rows
- Z axis orthogonal to chamber plane
- Chamber center position is fixed
- In case of 'ideal' geometry 'sector' and 'chamber' systems coincide

Misalignment data from TGeo

- In case one loads the geometry from file:
- Inside AliMC::.InitGeometry() call new method of AliModule - ReadParsFromTGeo()
- In case of TPC - inside this method call AliTPCParam:: ReadParsFromTGeo()
- Retrieve the position and orientation of the chambers from TGeoManager ('TIRC' \& ‘TORC' volumes) as TGeoHMatrix'es
- Transform them to the 'sector' coordinate system
- Store the differences to the ideal positions and orientations as TGeoHMatrix array inside AliTPCParam

Misalignment in TPC simulation

- In case the transport MC uses TGeo, the misaligned geometry is used correctly up to the production of Hits
- In case of TPC the MC is used to produce hits along the track trajectories
\Rightarrow Misalignment should be introduced also at the digjitization level:
- During the digitization of the hits, the ionization electrons are transported 'by hand' to the surface of the readout chambers
- The misalignment data from AliTPCParam are loaded and used to put the electrons into the local coordinate system of the readout chambers
- The rest of the digitization is not affected
- We assume that the misalignment is relatively small \Rightarrow No flipping of electrons between neighbor sectors

TPC tracking using alignment data

- Main problem - the choice of the 'tracking' coordinate system:
- 'Sector' (ideal') coordinate system
- 'Chamber' coordinate system
- 'Mixing' of 'Sector' and 'Chamber' coordinate systems

Definition of the tracking coordinate system

- 'Sector' ('ideal') coordinate system
- Transform the clusters from the 'chamber' to 'ideal' system
- Tracks are untouched
- Need to redefine track propagation method:
- Pad row - time bin plane is no longer orthogonal to the X axis
- Propagation not to a fixed X reference plane but to $X(Y, Z)$

Definition of the tracking coordinate system

- 'Chamber' coordinate system
- Clusters are untouched
- Propagation is on a fixed X reference plane
- Each time track enters new sector it is transformed into the 'chamber' coordinate system
- Magnetic field is no longer parallel to the Z axis
\Rightarrow Tracks are not helices!

Definition of the tracking coordinate system

- Proposal for the 'tracking' coordinate system:
- Use 'sector' ('ideal') coordinate system rotated in $X Y$ so that the X axis is orthogonal to the pad rows
- We are preserving our helix track model
- Track propagation to $X(Z)$

Tracking coordinate system

Tracking coordinate system

- Misalignment TGeoHMatrix is decomposed into 2 parts:
- Rotation in $X Y$ plane + translations in $X \& Y$
- Rotation in $X Z \& \& Z$ planes + translation Z
- Tracks and clusters are transformed to the same tracking coordinate system in which the track propagation and cluster association is being done
- Track transformation just few times per tracking pass
- The new propagation method is rather fast (linear approximation

Track propagation

- The propagation X position is found assuming straight track:
$Z \sim X^{*} \operatorname{Tan}(\lambda)$
- Usually we propagate by <= couple of cm
- The expected misalignment is at the order of mrad

\Rightarrow the linear approximation works to microns precision

Implementation inside TPC tracker code

- For the moment the misalignment matrices are taken from AliTPCParam stored in gAlice (in future should be loaded from CDB - either stand-alone or inside AlijTPCParam object)
- The Y\&Z cluster positions are transformed to the 'tracking' coordinate system while loaded into the tracker (AlíTPCtracker::TransformCluster())
- In order to transform tracks between 'ideal' and 'tracking' coordinate systems:
- New AliTPCtrack::Translate() method is added
- Already available AlíTPCtrack::Rotate() is used

Implementation inside TPC tracker code

- The calls to PropagateTo() and Rotate() methods of AliTPCtrack were replaced by new methods PropagateSeed() and RotateSeed() of the tracker:
- Check if the track is to enter in a new sector
- If yes then:
- Take from the misalignment matrices the $X \& Y$ positions and XY angle of the current and the next readout chamber
- Transform the track into the 'ideal' coordinate system
- Rotate the track (in RotateSeed() method)
- Transform the track into the next 'chamber' coordinate system
- Propagate the track (in PropagateSeed() method)
\square

Implementation inside TPC tracker code

- Coordinate system (chamber index) of the track is identified by:
- index of the last pad row on which track is propagated
- azimuthal angle of 'sector' coordinate system $\left(10^{\circ}+\mathrm{i} \times 20^{\circ}\right)$
- z position of the track
- At entrance/exit of the three tracking passes (Clusters2Tracks, PropagateBack and Refitl|nward tracker methods), the tracks are transformed to 'chamber'/'sector' (ideal') coordinate system, respectively.
- The ESD tracks are always stored in the 'sector'('ideal') coordinate system

Results

- The method was tested with misalignment configuration where all the inner chambers were randomly rotated and translated within 10 mrad and 0.5 cm
- The efficiency and resolution is restored back to the 'ideal' case
- The effect on multiple found tracks rate and kink finding to be further investigated
- No visible effect on the timing:
- Tracks are transformed between 'sector' \Leftrightarrow 'tracking' coordinate systems are called $\sim 3.5 /$ track
- New propagate method uses linear approximation
- Clusters are transformed to 'tracking' coordinate system only once

Barrel tracking with alignment data

- Define the 'alignable' objects in the detector's geometry
- Implement method to retrieve the misalignment data from TGeo and store it as array of TGeoHMatrix
- Define an appropriate 'tracking' coordinate system
- Implement methods of the tracker which:
- Transform clusters and tracks to the 'tracking' coordinate system
- Calculate the X position for propagation
- Propagate and rotate the tracks in the 'tracking' coordinate system

Conclusions \& Outlook

- The code for the simulation and reconstruction with misaligned TPC geometry is almost ready to be committed
- Check the tracking performance on higher statistics
- Finalize the way we access TGeo geometry (see Raffacle's talk)
- Further develop our TPC alignment (and calibration) model - introduction of ExB, space charge, drift velocity, central membrane misalignment, ...
- Develop procedures for alignment and calibration

