TPC sector alignment

Marian Ivanov

Outlook

- Requirements
- □ STAR TPC example
- Alignment algorithm using tracks Inner outer sectors
 - Simulation
 - Results
- Laser system

Requirements

- The positioning of detector elements has to be known on the level better than precision of track parameters under ideal condition
 - Only stochastic processes, no systematic effects
 - Current AliRoot simulation
- High momenta tracks >20 GeV, inner volume of the TPC
 - Sigma y ~ 0.1 mm
 - Sigma z ~ 0.1 mm
 - Sigma theta ~ 0.2 mrad
 - Sigma phi ~ 0.2 mrad

Requirements

- Systematic effects
 - Uncertainty in positioning (alignment)
 - Drift velocity (as a vector)
 - Temperature and electric field dependent
 - \Box E(x,y,z), T(x,y,z) first approximation
 - E = Ez =const
 - T =const
 - ExB
 - Space charge
- □ Static positioning, E field, B Field
- Non static (quasi static) Temperature, space charge
- Expected distortion (according TPC TDR)
 - ~ 2 mm
 - ~ 1.5 mrad

Example - Sensitivity

- TRD calibration relative to the TPC effective drift velocity, time 0, ExB
 - Corresponding shift of tracklet by ~300 mum
 - Improvement of pt resolution factor ~30 %

STAR - Tracking detectors

- TPC, SVT, SSD, FTPC, TOF, pVPD, CTB, RICH
 - Initial positions from survey (or previous year), later fine-tuned with tracking
 - Pedestals taken throughout run-year
 - Gains determined early in the run (and monitored) using pulsers
 - (Initial) drift velocities determined / monitored with lasers
 - Distortions studied in Fast Offline

STAR TPC

- Gains needed early in run-year to use online cluster-finder
- Updated every few months, or when pads/RDOs die
 Automated updating of drift velocities (and initial TO) from laser runs
 - Checked / fine-tuned via matching primary vertex Z position using east and west half tracks separately
- Ideally determined from track-matching to SVT (perpendicular drift), but requires all other calibs to be done already! (principle has been tested)

TPC GridLeak distortion

 Dependence on field, track charge, location, luminosity consistent with ion leakage at gated grid gap

STAR - TPC GridLeak distortion (space charge effect)

 Correcting for the gap leaves some residual even smaller effects (still under study - a testament to the TPC that we can see them!)

Simulation

- Stand alone simulator
- Ideal helix
- Pt range >0.4 GeV
 - Exp(-x/0.4) distribution
- □ Magnetic field 0.5 T
- Tracks inside of one sector, inner and outer
 - Pads and pad-rows and time bins inside chamber perfectly aligned
- Outer sector misaligned
 - Characterize by TGeoHMatrix

Motivation

- Why to use tracks in the magnetic field for the alignment?
 - Rotation and translation of the chambers can be affected by the presence of the magnetic field

Pt spectra and tracks

Simulation

- Example results:
 - Misalignment matrix:
 - .999999 0.000873 0.000698 Tx = -0.2
 - 0.000873 1.000000 -0.000174 Ty = 0.2
 - -0.000698 0.000175 1.000000 Tz = 0.2
 - Space charge effect and ExB switched off

Track fitting

- AliRieman (new standalone class) used for track fitting
 - Less than 1 s for track fitting (20000 tracks)
- Picture:
 - Pt resolution for non aligned sectors

Alignment (0)

Alignment (1)

- Separate track –fitting in inner and outer sector
- Parabolic track approximation at the middle reference plane in both chambers
- Minimization of the chi2 distance between space point in reference plane of upper chamber and corresponding extrapolation of the inner track
 - TMinuit used

Alignment (2)

FCN=1257.14 FROM MIGRADSTATUS=CONVERGED132 CALLS133 TOTALEDM=2.42528e-12STRATEGY= 1ERROR MATRIXUNCERTAINTY0.0 per centEXT PARAMETERSTEPFIRSTNO.NAMEVALUEERRORSIZEDERIVATIVE

1	rx	1.07144e-02	8.90503e-04	1.58139e-05	-2.35997e-01
2	ry	3.95478e-02	1.99467e-03	6.68023e-06	-2.30862e+01
3	rz	4.82396e-02	5.75040e-03	9.11108e-06	1.29964e-01
4	SX	-1.96256e-01	4.94420e-03	4.00290e-05	-3.84583e+00
5	sy	2.05511e-01	1.60506e-02	2.49723e-05	7.85195e-02
6	SZ	1.99985e-01	5.07757e-03	2.49634e-05	5.15010e+00

Alignment – Covariance matrix

PARAMETER CORRELATION COEFFICIENTS

NO. GLOBAL 1 2 3 4 5 6 1 0.86752 1.000 0.018 -0.192 -0.025 0.266 0.014 2 0.99573 0.018 1.000 0.023 -0.921 -0.021 0.971 3 0.99896 -0.192 0.023 1.000 -0.005 -0.996 0.027 4 0.97508 -0.025 -0.921 -0.005 1.000 0.002 -0.819 5 0.99900 0.266 -0.021 -0.996 0.002 1.000 -0.025 6 0.99065 0.014 0.971 0.027 -0.819 -0.025 1.000

Results (5000 tracks)

Original misalignment matrix - Amis

Residual matrix – Afit.Inverse()*Amis

Results – Rotation Z

Left side – 2000 track samples
 Right side – 5000 track samples

Results – Rotation Y

Right side – 5000 track samples

Results – Rotation X

Left side – 2000 track samples
 Right side – 5000 track samples

Translation X

Translation Y

Translation Z

Result (Pt residuals)

Alignment - ExB

- ExB effect simulated
 - Xshift = kx*(z-250) kx=0.005
 - Yshift = ky*(z-250) ky=0.005
 - The same in both sectors
- Alignment with tracks (2000 track samples)
 - Systematic shifts in translation estimates
 - □ X 0.02 mm, Y 0.08 mm, Z 0.003 mm
 - Systematic shift in rotation estimates
 - Rz 0.05 mrad, Ry 0.006 mrad, Rx 0.006 mrad

ExB effect

- □ Left Systematic shift of DCA in r-phi
- Right side Systematic shift of DCA in Z as function of theta

Alignment - Conclusion

- Huge statistic needed to develop and validate alignment procedure
 - First estimation made
- □ How to proceed?
 - Use and develop stand alone simulator for calibration study?
 - □ 5000 tracks *100 samples =500000 tracks
 - Or use AliRoot framework to generate space points
 - Apply different systematic shift on the level of space points
 - Rotation, translation, ExB, space charge (parameterization needed)

Laser system (0)

- Narrow and short-duration UV laser beams can be used to simulate particle tracks in the TPC.
- Nd: YAG lasers (1064~nm) with two frequency doublers,

generating a beam with 266~nm wavelength, have been successfully applied for this purpose in NA49 and

in CERES/NA45 at the SPS

The ionization occurs via two-photon absorption and thus the transverse distribution of the ionization density is in every direction sqrt(2) times narrower than the lightintensity distribution

Laser system (1)

- □ The aim of the laser calibration system
 - Measure the response of the TPC to straight tracks at known position.
- In particular, the laser system should allow the TPC readout electronics and software to be tested, distortions caused by misalignment of the sectors to be measured
- Temporal and spatial changes of the drift velocity down to 10⁻⁴ to be monitored (0.25 mm?)
- Apparent track distortions due to ExB and space-charge effects to be measured, and the transition region between the drift volume and wire chambers to be understood.

Laser system (3)

- 168 beams in each of the TPC halves
 - 6x7x4
- absolute position
 - up to 2 mm at the entrance of the track into the TPC
 - up to 2 cm at its end-point
- Relative position
 - up to 0.2 mm entrance
 - and 2 mm at the end-point
 - Size

- Directly after the mirror the beam has a box profile, with a size equal to that of the mirror (1 mm)
- About 60--80~cm later the beam acquires a perfect Gaussian shape with diameter ~0.6 mm (4 sigma)
- Subsequently, the beam stays Gaussian and its diameter increases to d~=1.6mm at 300 cm, which corresponds to a divergence of 0.5~mr