Reconstruction & Efficiency

Offline studies for the Dimuon Forward Spectrometer

Alice Offline Week, October 3-7 2005

Christophe.Suire@ipno.in2p3.fr

Reconstruction & Efficiency

Outline :

The Dimuon Spectrometer Tracking procedure Efficiency Calculations Trigger Efficiency Vertex resolution vs Y mass Conclusions

Christophe.Suire@ipno.in2p3.fr

Dimuon Forward Spectrometer

Reconstructed hits

5 tracking stations

10 detection planes

• Station 1 & 2 :

2 planes per station 1 plane = 4 quadrants

• Station 3,4 & 5

2 planes per station 1 plane = 18/26 slats

- 1 plane gives two (X,Y) coordinates :
 - bending plane (along x) : X_{Const_Res} Y_{Var_Res}
 - non bending plane (along y) : X_{Var_Res} Y_{Const_Res}

 Segments (≡ 2 associated rec. hits in the same station) are reconstructed in all stations.

[see AliMUONEventReconstructor::MakeTracks()]

- Station 5 : loop over all segments
 - try to find/associate a segment in station 4
 - try to find/associate a hit in station 4
 - tag if choosen
- Station 4 : loop over all segments
 - try to find/associate a segment in station 5
 - try to find/associate a hit in station 5
 - tag if choosen

with 2 segments or 1 segment+1 point, an AliMUONTrack is created

AliMUONTrack(BegSegment,EndSegment).

in AliMUONEventReconstructor::FollowTracks()

- FollowTracks in Stations 3, 2 and 1
 - Z extrapolation (p_{\perp} estimation, helix extrapolation)
 - recalculate X² with the new segment
 - add the best segment to the track (X²_{min} =5.0)
 - if no best segment, try with a single hit (X²_{min} =3.0)
 - if no best hit, delete track
- Fill track parameters
- Vertex extrapolation (through absorber) : apply BransonCorrection on track parameters

Efficiency definition

• Definition :

- 1) mc Monte Carlo Upsilons generated with decay muons in the acceptance of the Dimuon Forward Spectrometer (CutOnChild==1)
- 2) tr Tracks that satisfy software reconstruction criteria, i.e. enough hits in chambers to allow software reconstruction
- **3) rc** Reconstructed Upsilons must satisfy cuts on :
 - the mass range [m_v^{PDG}-1; m_v^{PDG}+1] GeV/c² (bad choice corrected)
 - the p_{\perp} reconstructed \leq max. p_{\perp} generated

tr/mc : "detector" efficiency (dead zones) rc/tr : "tracking code" efficiency rc/mc : efficiency

NB : all "hardware" parameters (FEE) and chambers efficiencies are set to defaults values.

Y Efficiency (flat [p₁,y], no backgd)

-4.5

Y Efficiency (flat $[p_{\perp},y]$, no backgd)

Y Efficiency (realistic [p₁,y], no background)

(p⊥,y) distribution are from CDF scaling ♦ look at Pb+Pb @ √s_{NN} = 5.5 TeV

Y Efficiency vs Code Version

Major change in the DFS software Old⇒New Segmentation ♦ Y yield is a good indicator

Flat (p_{\perp},y) dist.: Eff_{OldSeg} = 89.4%
(from previous slides)CDF scaled (p_{\perp},y) : Eff_{OldSeg} = 91.9% \Rightarrow Switch to new SegmentationFlat (p_{\perp},y) : Eff_{NewSeg} = 90.8 % (18157/20000)CDF scaled (p_{\perp},y) : Eff_{NewSeg} = 92.8 % (18552/20000)

Small gain but a gain (up to 1.4%) is observed → code monitoring (same seed, same macros, same everything...) **Trigger Efficiency : definition**

- What is the Trigger information :
 - 1) All (simulated) data from the Trigger Chambers is available
 - 2) Hits in Trigger Chambers→pattern→Look UpTable→Trigger Type
 - 3) Trig. Types: SinglePlus, SingleMinus, SingleUndefined, UnlikePair,

LikePair & LowPt (~1GeV/c), HighPt (~2Gev/c), AllPt (~1GeV/c)

- [NB: logical rules like 1 undefined \Rightarrow 1 UnlikePair and 1 LikePair @ AllPt]
 - 4) DAQ is governed by these Trigger Types
- How is define the Upsilon Trigger
 - 1) As we choose ! SingleMinusHightPt, UnlikePairHightPt, etc...
 - 2) the UnlikePairAllPt seems appropriate

Trigger Efficiency : 20k Y generated (CDF Scaled param) ⇒ count UnlikePairAllPt Trigger <u>No track reconstruction required !</u>

Trigger type exemples

event 30 nglobals nlocals: 1 2					
Global Trigger output number of Single Plus : number of Single Minus : number of Single Undefined number of UnlikeSign pair : number of LikeSign pair :	Low pt 1 1 1 : 0 : 1 0	High pt 1 1 0 1 0	All 1 1 0 1 0		_
					=

event 39 nglobals nlocals: 1 2

Global Trigger output		Low	/ pt	High pt	All	
number of Single Plus	:		0	0	0	
number of Single Minus	:		1	1	1	
number of Single Undefir	ned	:	1	1	1	
number of UnlikeSign pai	r :		1	1	1	
number of LikeSign pair	:		1	1	1	
=======================================	===	===	===	======	====	============

Some events can be more "exotic" !

event 7757 nglobals nlocals: 1 8				
Global Trigger output number of Single Plus : number of Single Minus : number of Single Undefined number of UnlikeSign pair : number of LikeSign pair :	Low pt 3 2 : 1 11 9	High pt 2 1 1 5 4	All 4 3 1 19 16	
=======================================	======	======	=====	=======

This event has 172 particles in the stack : 1 Y, 2 μ , 75 γ , 59 e- and 35 e+

• Results for 20k Y in the DFS Acceptance (Y \rightarrow µ+µ-)

Event with		SingleUndefinedAllPt trigger in the UnlikePair			
		0	1	>1	
0 trigger UnlikePairAllPt	1406				
1 trigger UnlikePairAllPt	18012	4872	9948	3192	
>1 trigger UnlikePairAllPt	582	108	316	158	
Trigger Upsilon Ok	18594	4980	10264	3350	

⇒ Trigger Eff = 93.0% (18594/20000)

- Upsilon Trigger Matching conditions :
- 1) Two reconstructed tracks (μ) which give an Y at the correct mass
- 2) Loop over trigger tracks and calculate a χ^2 for this matching pair match if $\chi^2 < 10$ ((x,y) position and slope matching rec. tracks)
- 3) Count the number of reconstructed tracks matched to trigger tracks (0,1 or 2)
- 4) Matching vs Generated trigger word
- 20000 Y generated (CDF scaled param)
 18552 Y reconstructed in the proper mass region (2 rec. tracks)
 18594 UnlikePairAlIPt triggers (2 trig. tracks) ⇒ Do we have a good matching ?

Rec./Trigger Tracks matching

Chr

- Matching :
- 1) 17715/18552 have the correct trigger word : 95.5%
- 2) 837 other trigger words are mostly SinglePlus/Minus
- 3) 2 tracks (µ) match 2 trigger tracks 17618/17715 : 99.4%

If we have an event with reconstructed Y and an UnlikePairAllPt trigger (95.5%), then : (μ+ & μ-) matching with trigger track = 99.4 % Single μ matching with trigger track = 100%

Y rec. mass vs vertex resolution

Y mass mean peak position stays rather flat Y mass mean peak width increase if $\sigma_{vtx} \ge 2$ cm

Conclusions

- Efficiency for Y (and µ tracks) under cont
 - Efficiency \geq 90% (97%)

hing

Tiny change be ion

< 2 \Rightarrow no effects on mass rec.

ency : \mathcal{E} = Acc × BR × Track Eff. x Trig. Eff $\varepsilon = 0.05 \times 0.0248 \times 0.9 \times 0.93 \sim 1/950$ Vertex resolution must be better than 2 cm

What are the ongoing studies

- Absorber model
 - Multiple Scattering : Branson Model
 - Energy Loss : parameterization
- Chamber geometry
 - geometry of the spectrometer : alignment
 - geometry of the chamber itself : mapping
- Field inside the Dipole Magnet
 - correction from latest measurements
- Vertex reconstruction
 - what precision is needed on the primary vertex
- Monitor the Code evolution

More Slides...

Branson Model for MS (i)

// initialize values for the Branson Correction

```
// zBP1 for outer part and zBP2 for inner part (only at the first call)
if (first) {
    first = kFALSE;
    zEndAbsorber = -503; // spectro (z<0)
    thetaLimit = 3.0 * (TMath::Pi()) / 180.;
    rLimit = TMath::Abs(zEndAbsorber) * TMath::Tan(thetaLimit); // = 26.3 cm ??
    zBP1 = -450; // values close to those calculated with EvalAbso.C
    zBP2 = -480;
}</pre>
```

// get tracks parameters

```
pYZ = TMath::Abs(1.0 / flnverseBendingMomentum);
sign = 1; if (flnverseBendingMomentum < 0) sign = -1;
pZ = Pz(); pX = Px(); pY = Py(); pTotal = TMath::Sqrt(pYZ *pYZ + pX * pX);
xEndAbsorber = fNonBendingCoor;
yEndAbsorber = fBendingCoor;
radiusEndAbsorber2 = xEndAbsorber * xEndAbsorber + yEndAbsorber * yEndAbsorber;
```

Branson Model for MS (ii)

if (radiusEndAbsorber2 > rLimit*rLimit) { zBP = zBP1; } //particle through the absorber else { zBP = zBP2; } //particle through the beam shield xBP = xEndAbsorber - (pX / pZ) * (zEndAbsorber - zBP); yBP = yEndAbsorber - (pY / pZ) * (zEndAbsorber - zBP);

// new parameters after Branson and energy loss corrections

Float_t zSmear = zBP ; pZ = pTotal * (zSmear-zVtx) / TMath::Sqrt((xBP-xVtx) * (xBP-xVtx) + (yBP-yVtx) * (yBP-yVtx) +(zSmear-zVtx) * (zSmear-zVtx)); pX = pZ * (xBP - xVtx)/ (zSmear-zVtx); pY = pZ * (yBP - yVtx) / (zSmear-zVtx); fBendingSlope = pY / pZ; fNonBendingSlope = pX / pZ; pT = TMath::Sqrt(pX * pX + pY * pY); theta = TMath::ATan2(pT, TMath::Abs(pZ)); pTotal = TotalMomentumEnergyLoss(thetaLimit, pTotal, theta); fInverseBendingMomentum = (sign / pTotal) * TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope + fNonBendingSlope * fNonBendingSlope) / TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope); // set track param at vertex position at (0,0,0) or at a smeared vertex fBendingCoor = xVtx; fNonBendingCoor = yVtx; fZ = zVtx;

P_{\perp} estimation at station 3 level

Branson model for Absorber

Parametrized function of the total momentum

in AliMUONTrackParam::TotalMomentumEnergyLoss(Double_t thetaLimit, Double_t pTotal, Double_t theta)

Scheme of the DFS

Tracking : Segments

- 1. Segments are make individually for each station ()
- 2. Get a hit in one chamber and try to find one in the other chamber
 - 1. linear interpolation to primary vertex
- 3. fs

Rec./Trigger Track matching

Trigger Word	# of Event	Meaning
0	13	No trigger track
5	9	SinglePlus Lpt + Allpt
7	186	SinglePlus Lpt + Hpt + Allpt
40	1	SingleUndef +
56	165	Single
448	389	Single
16440	3	LikePair + …
20487	4	LikePair + …
20536	5	LikePair + …
28679	46	LikePair + …
28728	35	LikePair + …

Christophe.Suire@ipno.in2p3.fr

Vertex resolution and Y width

- Vertex resolution in ALICE :
- 1) ITS can give the vertex position, ~10 µm precision (for all events ?)
- 2) But the fast pixels detector will be able to give almost the same resolution, ONLY if it's installed in time...
- 3) T0 will be present, but has a lower resolution $\sigma_{vtx} \sim 1$ cm

Need to check the reconstruction for different values of the vertex resolution σ_{vtx} [0,0.5,1,2,5,10] cm

- How to get the Y mass peak width :
- 1) Shape is not a simple gaussian
- 2) Large tails, define ranges or use a "total" fit ?
- 3) Let's play....

Y mass peak fits (i)

Chi2 is not good Tails are not taking into account Needs (and thus depends on) a range

Christophe.Suire@ipno.in2p3.fr

Y mass peak fits (ii)

Christophe.Suire@ipno.in2p3.fr

Y mass peak fits (iii)

Y mass peak fits (iv)

Chi2 is good Tail is here correctly fitted Range covers the whole distribution

Y mass peak vs p_{\perp}

Landau \otimes Gauss and $\sigma_{vtx} = 0$. \Leftrightarrow Look at Y Peak width and position vs p₁

Christophe.Suire@ipno.in2p3.fr