
4 Oct 2005 / Offline week

Shuttle program for
gathering conditions data
from external DB

Boyko Yordanov
4 October 2005

ALICE Offline week

Outline
General Overview
DCS Conditions Data Model
CDB Preprocessors and Default Storage
Shuttle Configuration
DCS API
General Tests
Conclusion

Overview

Collecting conditions data from external DCS
DB at predetermined time intervals
(for example at the end of every run)
Processing collected data using specific CDB
preprocessor for every sub-detector
Storing conditions data in the Conditions
Data Base (CDB)

General Schema of the Shuttle
AliShuttle – The Shuttle
program manager. Organizes
conditions data retrieval,
preprocessing and storing it
into CDB.
AliShuttleConfig – Interface
to the configuration stored
into LDAP server
AliCDBStorage – CDB
storage interface
AliDCSClient – Provides DCS
API. Communicates with
DCS AMANDA server over
TCP/IP

Conditions Data in DCS DB
The abstract representation of every conditions parameter
(temperature, voltage etc.) is organized in DataPoints (DP)
Additional attribute "alias" is assigned to every DP to
provide constant identifier for the relevant parameter
Conditions data is organized in value/timestamp series (one
for every parameter). As the DCS data is collected
independently on the experimental runs, part of it doesn’t
belong to any run
Every DP representing conditions parameter has one of the
following types:

DynFloatFloat

DynUIntegerUInteger

DynIntegerInteger

DynByteByte

DynBooleanBoolean

Dynimic typePrimitive type

DCS Conditions Data in AliRoot
Particular value/timestamp pair is organized in
AliDCSValueAliDCSValue object with the following composite
structure:

AliSimpleValueAliSimpleValue - Union like holder for DP value.
Provides setter and getter for every DP type
UInt_tUInt_t - Timestamp field

The value/timestamp series is represented by collection
(TListTList) of AliDCSValueAliDCSValue objects
Two value/timestamp (before and after requested
interval) pairs are included into the series (if they exist).
Especially useful if extrapolation/interpolation procedures
are used
As AliDCSValueAliDCSValue is a ROOT object that can be directly
stored into the Conditions DB

Calibration Data Preprocessors
Motivation for a CDB preprocessor:

Assuming that the DCS data is slowly changing and
well-behaved over a “long” time period:

User-defined objects can be created (histograms, functions,
average values) depending on the data type and observed
behavior
The amount of data stored in CDB will be minimized
It is simpler to use specific object than long value/timestamp
series

Every sub-detector can use its own CDB
preprocessor implementing AliCDBPreProcessorAliCDBPreProcessor
interface:

Allows for intelligent treatment of raw conditions data
If specific preprocessor is not provided, the raw
series value/timestamp is stored (default behavior)

AliCDBPreProcessor
AliCDBPreProcessorAliCDBPreProcessor is a subclass of TNamedTNamed. Method TNamed::GetNameTNamed::GetName()() is
used as preprocessor identifier (sub-detector name)

AliShuttle::RegisterCDBPreProcessor(AliCDBPreProcessorAliShuttle::RegisterCDBPreProcessor(AliCDBPreProcessor*)*) is used to register
specific preprocessor to the Shuttle manager

AliCDBPreProcessorAliCDBPreProcessor interface methods:
void void Initialize(Int_tInitialize(Int_t run, run, UInt_tUInt_t startTimestartTime, , UInt_tUInt_t endTimeendTime)) – Called at the
beginning of conditions data retrieval (Before the first alias is processed)

void Finalize()void Finalize() – Called at the end of conditions data retrieval (After the last
alias is processed)

void void Process(constProcess(const char* alias, char* alias, TListTList& & valueSetvalueSet, , Bool_tBool_t hasErrorhasError)) – Called
sequentially for every alias in the configuration after its data is retrieved from
DCS DB

AliCDBPreProcessorAliCDBPreProcessor helper methods:
Bool_tBool_t Store(constStore(const char* char* specTypespecType, , TObjectTObject* object, * object, AliCDBMetaDataAliCDBMetaData* *
metaDatametaData)) – Stores object and metaData to the underlying CDB storage
using pathname: <detector>/DCS/<sepcType>

Default Storage to CDB
Whole value/timestamp series (TListTList of
AliDCSValueAliDCSValue object) is stored to CDB with
pathname: <detector>/DCS/<alias>
Two properties are added to AliCDBMetaDataAliCDBMetaData:

StartTime - AliSimpleValueAliSimpleValue denoting run start time
EndTime - AliSimpleValueAliSimpleValue denoting run end time

Getting run start time example:
AliSimpleValue* startTimeHolder;
startTimeHolder = (AliSimpleValue*) metaData->GetProperty("StartTime");
UInt_t startTime = startTimeHolder->GetUInt();

Shuttle Configuration
Conditions data is retrieved only for those detectors for which there
is a valid configuration
LDAP server is used for keeping configuration entries and
organizing access policy
AliShuttleConfigAliShuttleConfig provides transparent interface to the underlying
configuration server
TLDAP package in ROOT is used as API for the LDAP server

ipHost – Single value attribute describing
AMANDA server host

ipServicePort – Single value attribute
describing AMANDA server port

alias – Multi value parameter describing the
set of aliases which will be retrieved from
DCS DB

Configuration Example
Example of sub-detector entry in ldif format
which can be written to LDAP server

#TPC config
dn: dt=TPC,dc=alice,dc=cern,dc=ch
objectClass: shuttleConfig
dt: TPC
ipHost: 192.168.39.21
ipServicePort: 4242
alias: HighVol01
alias: HighVol02
alias: TpcTempSect01
alias: TpcTempSect02

AliDCSClient – DCS API

DM – Data manager part of
PVSS SCADA system
which organizes the work with
the underlying data
base.

AMANDA – Communication
layer implementing server
side of AliDCSProtocol

AliDCSClient – Client side of
AliDCSProtocol which
provides DCS API

AliDCSClient Overview

Int_tInt_t GetDPValues(constGetDPValues(const char* char* dpNamedpName, , UInt_tUInt_t startTimestartTime, , UInt_tUInt_t
endTimeendTime, , TListTList& result)& result) - Retrieves data from DCS DB for data point
dpName in time interval startTime – endTime

Int_tInt_t GetAliasValues(constGetAliasValues(const char* alias, char* alias, UInt_tUInt_t startTimestartTime, , UInt_tUInt_t
endTimeendTime, , TListTList& result)& result) - Retrieves data from DCS DB for alias in
time interval startTime – endTime

In case of negative value returned it indicates that some of the
following errors occurred:

BadState
Timeout
BadMessage
CommunicationError
ServerError

AliDCSProtocol
AliDCSProtocol is simple message protocol over TCP/IP
Every message has header with fixed structure and variable
body depending on the message type
Following message types constitute the protocol:

Request – Sent by AliDCSClient to initiate data retrieval
Count – Sent by Amanda server to indicate total number
of value/timestamp pairs belonging to the request
ResultSet – Contains part of value/timestamp series
returned by Amanda server
Error – Sent by Amanda server in case of error

AliDCSProtocol Flow Chart

General Tests
Tests of DM-AMANDA -> AliDCSClient have
been discussed with DCS team:

DCS DB: 20GB test data generated with about 30
data points (2 Hz update data frequency for every DP
series)
Client: Sequential data retrieval for 1 DP and time
interval 1 hour (about 7200 values per series)
The amount of data requested will be increased
gradually (changing the number of DP and increasing
the time interval)
The client side test suite ready. Tests will be done
with a stable version of AMANDA server (also ready),
provided by the DCS group

Conclusion

Avoiding high load on the external DB: periodic polling,
long series of data extracted with one call and small
overhead
External DBs are accessed only for data relevant to
offline processing/analysis
Only this data is stored in the Conditions DB
AliCDBPreProcessor allows for the raw
calibration/alignment data to be treated before storing
into the Conditions DB: smart treatment, minimizes the
amount of calibration/alignment data in memory during
reconstruction
Unified method for accessing replicated data is provided
by CDB storage infrastructure
Worldwide availability through the Grid

Features and benefits of the presented approach:

