
ZDCs – Calibration and alignment issues

Calibration object

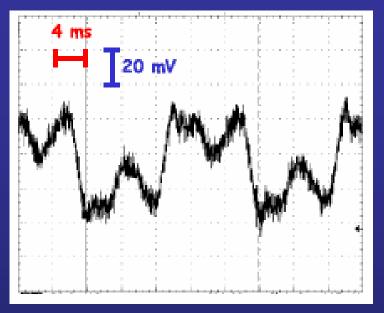
- Must contain information needed for:
 - Pedestal subtraction
 - Relative calibration between towers
 - Absolute energy calibration

•Read-out channels

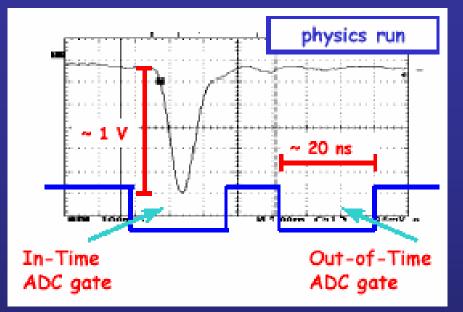
- 5 (PM) $\times 2(ZN, ZP) \times 2(sides) \times 2(high gain, low gain) = 40 ADC$
- e.m. calorimeter \rightarrow 2 (PM)×2(high gain,low gain) = 4 ADC
- External PM \rightarrow 3 ADC
- Scintillator for muons \rightarrow 8 ADC channels (or PU)

 55×2 channels

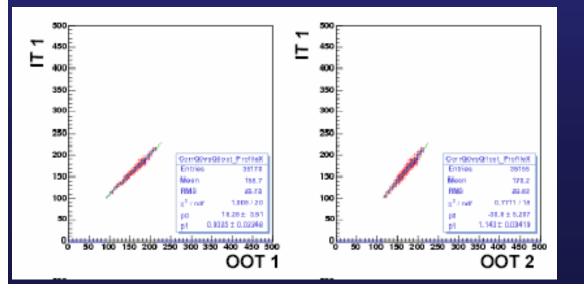
Creation of calibration object (pedestal)


- Generator trigger needed
 - Two possible implementation in the data taking scheme
 - Dedicated run (once per fill, assuming \geq 1 fill/24 h)
 - Inside normal data taking (low-rate, read only ZDC)

Useful to have both


Creation of calibration object (pedestal)

- Each physical channel has two corresponding read-out channels
 - In-time (with the event)
 - Out-time (~ 50 ns delay)
- Store in the calibration object
 - 1-d histo with ADC spectra (max 110)
 - 2-d histos with correlation In-time vs Out-time (max 55)
 - Fit parameters of the correlation (linear fit of the 2-d histos) (220 float)
 - Average values and RMS of the 1-d histos (mean pedestal) (110 float)


Example (from NA60)

Low frequency oscillation of the base-line

Timing of the ADC gates

Typical 2d-histo to be stored in the calibration object (together with the fit Parameters)

Creation of calibration object (calibration)

Initial relative calibration factors for the ZDC towers

ZN (4 towers \times 2 devices) \rightarrow 8 ZP (4 towers \times 2 devices) \rightarrow 8 ZEM (2 towers \times 1 device) \rightarrow 2

obtained off-line (1 per year, typically)

During data taking

- Laser trigger \rightarrow inject light to test PM relative stability
- E.m. dissociation \rightarrow 1 neutron/proton emission in ultraperipheral collisions to give absolute energy calibration
- Creation of calibration object (2nd step)
 - Re-read object (pedestal coefficients)
 - Subtract pedestal from ZN, ZP spectra (high-gain chain)
 - Store laser and e.m. dissociation spectra (20 1d-histo)
 - Calculate relative and absolute calibration coefficients
 - Store them in the calibration object

How many objects ?

- Depends on how long a typical run will be
- A useful calibration object should be created from ~ 10³ events per trigger type
 - generator triggers
 - laser triggers
 - e.m. dissociation events
- If it is possible to collect 10³ generator "mini-events" per run
 - \rightarrow 1 calibration object per run, identified by run number
 - Validity: for that run only
- If typical runs are rather short
 - \rightarrow Group runs when creating the calibration object
 - When 10³ events are reached
 - Write calibration object
 - Validity: for that group of runs

Runs can be grouped only if running conditions do not change

Additional information

• Additional information needed in order to:

- Eliminate runs clearly not good for physics analysis
- Precisely determine groups of runs with similar conditions
 → be able to set limits for validity of calibration files

Need

- ZDC DCS information
 - HV of all ZDC towers \rightarrow identify malfunctioning of the detector

Non-ZDC information

- Currents in the (main) elements of the beam line
 - \rightarrow may influence LHC orbit and, consequently, ZP response

Geometrical information

- Vertical position of ZN, ZP (adjustable by user/machine)
- Once per fill
 - Vertical scan to maximize response
 - Final position needs to be stored (DCS ?)

Status of AliRoot implementation

- Simulation
 - ZDC digits already expressed in ADC channels in a realistic way
 - Coefficient photoelectrons → ADC channels
 - Pedestal added, with gaussian smearing set by user
 - Framework good for testing of calibration procedures
- Calibration object
 - Class prototype created by Alberto (AliZDCCalibData), based on the corresponding NA60 class (NaZDCCalib)
 - Very similar
 - Hardware (Quartz fiber calorimetry)
 - Software (na60root, derived from root/aliroot)
- Still to be coded
 - Creation of calibration objects
 - Use of calibration objects in the reconstruction (calibrator)

Calibration strategy already tested with real data in previous experiments