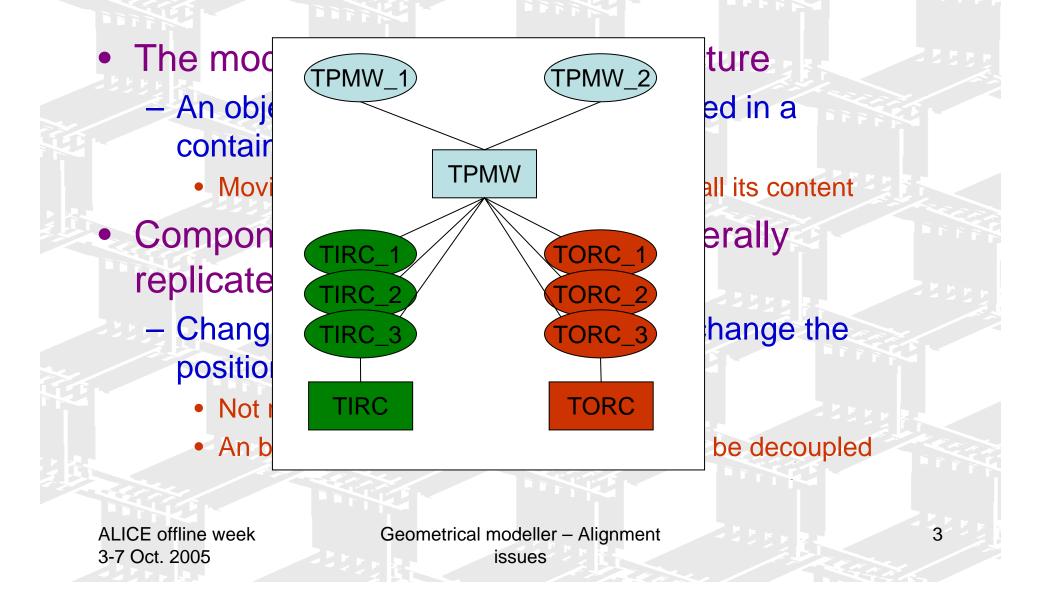
Geometrical Modeller – Alignment issues

Andrei Gheata ALICE offline week, 3-7 Oct. 2005

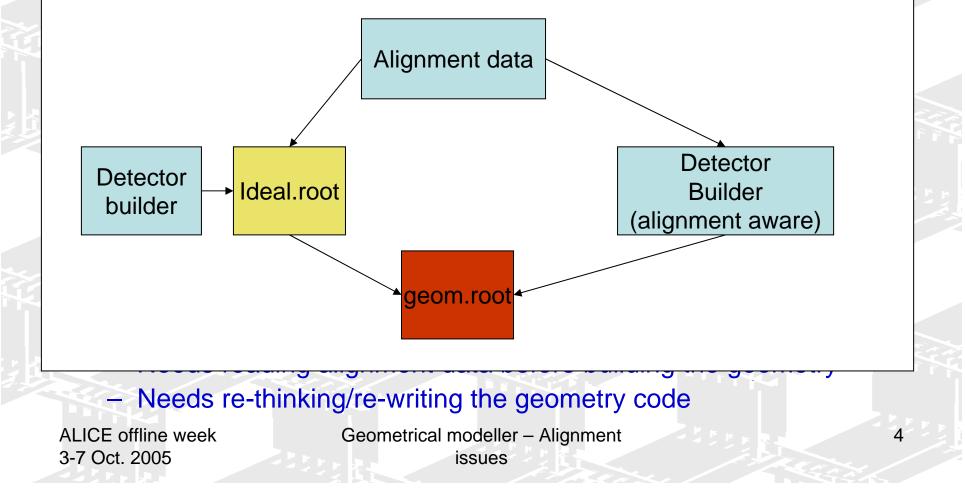
ALICE offline week 3-7 Oct. 2005

Geometrical modeller – Alignment issues


Outline

- (Mis)Alignment in TGeo
- How to use it
- Assemblies of volumes
- Deformations scaled shapes
- Conclusions

ALICE offline week 3-7 Oct. 2005


Geometrical modeller – Alignment issues

(Mis)Alignment for TGeo

Two approaches

- "Ideal" + perturbation approach
 - Geometry always build according our best knowledge of the

Physical nodes

- Describing a single object in the geometry
 - Fully qualified by a path
 - E.g. /ALIC_1/TPC_1/TPMW_1/TORC_15
 - May point to a container object
 - E.g. /ALIC_1/TPC_1
 - In this case moving it will move the whole content
- Class TGeoPhysicalNode
 - TGeoPhysicalNode(const char *path)
 - TGeoPhysicalNode::Align(TGeoMatrix *newmat, TGeoShape *newshape, Bool_t check)
 - Can effectively change the position/shape of an element in the existing closed geometry
 - Why shape ? A possible use case are deformations -> scaled shape

ALICE offline week 3-7 Oct. 2005

Geometrical modeller – Alignment

TGeoPhysicalNode

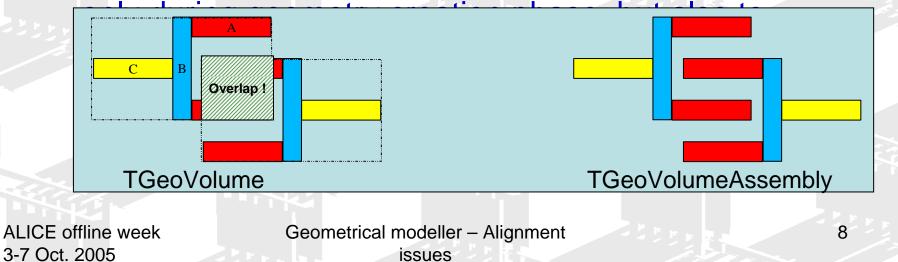
- Represents a geometry object that during the experiment will have a different position than the ideal one
- Definition: new TGeoPhysicalNode(path)
 - Object that is completely decoupled from the active geometry
 - Keep pointers to all TGeoNode objects in the corresponding branch.
 The object subject to alignment is the last one in the branch
 - Stores the global transformation matrix for fast master local conversions
- Allows redefinition of the <u>relative</u> positioning matrix of the last node in the branch
 - TGeoPhysicalNode::Align(pNewMatrix)
 - Duplicates the branch using the new matrix and connects it in the active geometry tree
 - Re-voxelizes the mother volume of the aligned node
 - Optionally checks if the new position produces overlaps

ALICE offline week 3-7 Oct. 2005

Geometrical modeller – Alignment

Scaled shapes

- Possibility to scale geometry requested long time ago by users
 - Not many use cases for hierarchical scaling
 - Except enlarging/shrinking uniformly a structure
 - Hard to implement navigation in general case (non-conservation of distances)
 - More useful and easy to implement at shape level
 - New shapes, deformations, ...
- Scaled shapes available in CVS version


ALICE offline week 3-7 Oct. 2005

Geometrical modeller – Alignment issues

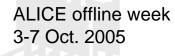
Volume assemblies

- Union of several different volumes positioned with respect to a common local frame
 - An assembly is just a volume having no shape container
 - No medium/material needed: a point INSIDE the assembly is always in one of the components

Usage of assemblies

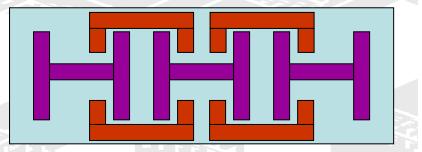
- Easy creation using 1
 - TGeoVolume *vol = new Too VolumeAssembly
 - vol->AddNode(pVol1, id, pl<mark>vlatr</mark>ix);
 - Same constrains as for volumes (no overlaps of components) except extrusion
- Very useful for defining complex standings when to define a container made of a basis shape.
 - Nesting allowed
 - No navigation performance penal
- Example of usage in: \$ROOTSYS/tutorials/assembly.C
 - Description in release notes

ALICE offline week 3-7 Oct. 2005


Geometrical modeller - Alignment

issues

Converting existing geometry to assembly structures


- We have:
 - All daughters in same container (for "MANY" reasons)
 - CONTAINER/ A,B,C,...
- We want to create assemblies:
 - For all structures that should stick togeather
 - CONTAINER/ASM1/A,B,C
 - CONTAINER/ASM2/D,E,F
- We do:

- TGeoVolumeAssembly *ASM1 = new TGeoVolumeAssembly(name);
 - Instead of CONTAINER->AddNode(A,...);
 - We do:
 - ASM1->AddNode(A,...);
 - CONTAINER->AddNode(ASM1);
 - E.g. we add an additional level between CONTAINER and A,B,C,...
- No interface at VMC level
 - One can add TGeo specific code protected by IsRootGeometrySupported

Geometrical modeller – Alignment

issues

Overview

- TGeo provides support for:
 - Plugging alignment data in existing geometry (TGeoPhysicalNode)
 - Scaling shapes (TGeoScaledShape)
 - Describing assemblies as trackable structures to avoid flat geometries and potential overlaps of containers
- To adapt and optimize trackers in real conditions, detector code should be aware of:
 - What can be moved in their REAL geometry
 - At which scale
- Examples of usage of these features already exist:
 - \$ROOTSYS/tutorials/assembly.C
 - \$ROOTSYS/tutorials/geodemo.C
- Short demo following...

ALICE offline week 3-7 Oct. 2005

Geometrical modeller – Alignment

issues