PHOS alignment

PHOS geometry

PHOS has 5 modules
Each module consists of EMC and CPV 1 EMC module contains 3584 crystals
1 CPV module contains 7168 pads

Requirements for alignment -

- Coordinate resolution of PHOS is 1-2 mm
- Internal structure of the modules is fixed and not a subject of survey nor alignment:
- Crystals are assembled into modules in a hard structure with known position up to few tens of microns
- Relative position of CPV and EMC is fixed
- Modules are attached to a cradle and may need geometry parameters to store to CDB:
- (x, y, z) of the module reference point (center?) in MARS
- Rotation matrix of the modules in MARS
- For particle identification the track extrapolation from TPC to PHOS is needed. Module position w.r.t. TPC is to be known to a precision not better than 1 mm .
- Required precision can be provided by the optical survey which is valid until deinstallation of the detector.

Alignment data structure

class AliPHOSAlignData

protected:
Float_t fModuleCenterPosition[5][3]; // xyz position of a module centers in MARS
Float_t fModuleAngles[5][3][2]; // Polar and azimuth angles for 3 axes of EMC // modules in MARS
public:
Float_t GetModuleCenterPosition(Int_t module, Int_t ixyz)
Float_t GetModuleOrientation (Int_t module, Int_t ixyz, Int_t iangle)
void SetModuleCenterPosition(Int_t module, Int_t ixyz, Float_t pos)
void SetModuleAngle (Int_t module, Int_t ixyz, Int_t iangle, Float_t angle)

Size of the object: 45 floats

, Existing geometry implementation in PHOS

- Simulation geometry is still ideal and calculated from a minimum set of parameters
- All PHOS modules are positioned in ALICE with 3 parameters:
- Distance from IP to PHOS front cover (460 cm)
- Angle between modules (20 degrees)
- Number of modules (5)
- Cells of the modules (56×64) are produced by division of the modules into elements with fixed size (2.26 cm)
- All other parameters are calculated from 3 basic ones:
- Position azimuth angle of individual modules $\left(-40^{\circ},-20^{\circ}, 0^{\circ}, 20^{\circ}, 40^{\circ}\right)$
- (x, y, z) for individual module position in MARS
- Rotation matrix (AliModule::AliMatrix()) of module orientation in MARS (φ_{1}, $\left.\theta_{1}, \varphi_{2}, \theta_{2}, \varphi_{3}, \theta_{3}\right)$
- Normal to the modules point strictly to IP, i.e. $\varphi_{1}=0^{\circ}, \varphi_{2}=0^{\circ}, \theta_{2}=0^{\circ}$, $\varphi_{3},=90^{\circ}$
- All transformations from global to local system and vice versa are reduced to rotation around z-axis

, Changes towards real geometry

- AliPHOSGetter: to add AlignData() to retrieve AliPHOSAlignData from CDB
- AliPHOSGeometry: to add a new data member AliPHOSAlignData *fAlignData
- In AliPHOSGeometry::Init() modify to retrieve fAlignData from CDB via AliPHOSGetter::AlignData()
- Calculate position coordinates (x, y, z) and orientation angles (φ_{1}, $\theta_{1}, \varphi_{2}, \theta_{2}, \varphi_{3}, \theta_{3}$) of individual modules
- Modify AliPHOSGeometry::GetGlobal() to calculate rec.point position in MARS with real rotation matrices
- Modify AliPHOSGeometry::Global2Local() to transform the point position in MARS into local system of module

Conclusion

- PHOS alignment is rather simple and reduced to 45 parameters.
- Optical survey is enough to provide the necessary precision
- Container class with alignment data is ready
- Alignment data will be retrieved from CDB similar to calibration data (see Boris' talk yesterday)
- Changes in PHOS geometry are localized to about 5 functions and should be done ASAP

