
1

CERN-ITC
Code Analysis Project

2004-2007
Paolo Tonella

ITC-irst, Centro per la Ricerca Scientifica e Tecnologica
Povo, Trento, Italy

tonella@itc.it

2

ITC-irst

Interested in collaborations on advanced
research topics.
Develops research prototypes within funded
research projects.

Research Centre conducting research in
Computer Science, Microsystems and
Surface Physics.

3

Software Engineering
research at ITC-irst

Source code analysis and manipulation.
Testing.
Programming languages.

STAR
Software Technology Advanced Research

http://star.itc.it

4

Past CERN-ITC project
1999-2003

Reverse engineering of UML diagrams from
C++ code

Automated verification of coding conventions
Involved experiments: Alice, ATLAS
Prototype tool: RuleChecker
Tool users: Alice, ATLAS, IT-Control (PVSS), Root,
etc.
Availability: http://spi.cern.ch/ → External Software

Paolo Tonella, Alessandra Potrich,
Reverse Engineering of Object Oriented Code
ISBN: 0-387-40295-0
224 pages, 80 illustrations, Hardcover.
Series: Monographs in Computer Science
Springer-Verlag, 2005.

5

New CERN-ITC project
2004-2007

Automated test case generation
Migration to Aspect Oriented Programming
Code smell detection

6

Automated test case
generation

7

Coverage testing

1 program P
2 begin
3 input(x);
4 if (x > 0)
5 x++;
6 end if
7 print(x);
8 end program

1

2

3

4

5

7

6

8

A program can be delivered only
when all its statements (or
branches, paths, etc.) have been
traversed in some test case.

1. Statement coverage
2. Branch coverage
3. Condition coverage
4. Path coverage

x = 1 Coverage: 1

x = 0
x = 1 Coverage: 1, 2, 3, 4

8

Genetic algorithms

Individual 1

Individual 2

Individual 3

Individual N

…

Individual 1’

Individual 2’

Individual 3’

Individual N’

…

Population Population’

Selection of
the fittest

Mutation/
crossover

After some evolutionary steps, the fittest individual approximates
the searched optimum of the objective function

9

Evolutionary testing
Test cases are individuals of a population
Chromosomes encode test input values:

(v1, v2, …, vN)
Test cases are evolved by means of mutation (e.g.,
change value) and crossover (e.g., swap input value
tails)
The fittest individuals are the test cases that get
closer to the (current) target of test execution (e.g.,
covering a given branch)

10

Chromosomes

Procedural code:

Object-Oriented code:

(v1, v2, …vN)

$x0=A(): $x0.f(): $x0.g() @ v1, v2, …vN

class TestA extends TestCase {
public void testCase1() {

A a = new A(-1);
B b = new B();
b.f(2);
a.m(5, b);

}
}

$a=A(int):$b=B():$b.f(int):$a.m(int, $b) @ -1, 2, 5

chromosome
variables

input
values

11

Random chromosome
construction

1. A constructor for the object under test is randomly
selected: $a=A(int)@-1

2. The invocation of the method under test is appended:
$a=A(int):$a.m(int,$b)@-1,5

3. All required object constructions are inserted:
$a=A(int):$b=B():$a.m(int,$b)@-1,5

4. Method invocations to change the state of the created
objects are randomly inserted:
$a=A(int):$b=B():$b.f(int):$a.m(int,$b)@-1,2,5

Steps 3 and 4 are repeated until all chromosome variables used as
method or constructor parameters are properly initialized (well-
formedness of the resulting chromosome).

12

Random generation of input
values

A.m(int) Default integer generator: uniform selection in [0, 100]

A.m(int[-2;2]) Parameterized integer generator: uniform selection in [-2, 2]

A.m(int[MyIntGenerator]) Customized integer generator: method newIntValue()
from class MyIntGenerator is called to obtain the value

A.m(bool) Default boolean generator: true and false are equally likely

A.m(string) Default string generator: characters are uniformly chosen from
[a-zA-Z0-9], with the string length decaying exponentially

A.m(string[DateGenerator]) Customized string generator: only strings
representing legal dates are produced (e.g.,
“3/3/2003”)

Default, parameterized and customized input generators:

13

Fitness

Generation of the execution trace for each test case
Overlap between the execution trace and the
control/call dependences leading to the target
(branch not yet covered)

Selection of the fittest test cases requires:

14

Mutation operators

Change input value:

$a=A(int):$b=B():$b.f(int):$a.m(int, $b) @ -1, 2, 5

$a=A(int):$b=B():$b.f(int):$a.m(int, $b) @ -1, 4, 5

15

Mutation operators

Crossover: $a=A():$b=B():$b.f(int):$a.m(int, $b) @ -1, 2

$a=A(int):$b=B():$b.g():$b.f(int):$a.m(int, $b) @ 0, -1, 2

$a=A(int):$b=B():$b.g():$a.m(int, $b) @ 0, -3

$a=A():$b=B():$a.m(int, $b) @ -3

$a=A(int, int):$b=B():$a.m(int, $b) @ 0, 3, 6

$a=A():$b=B(int):$a.m(int, $b) @ 1, 6

$a=A():$b=B(int):$c=C(int):$b.h($c):$b.f():$a.m(int, $b) @ 1, 4, 5

$a=A(int, int):$b=B():$c=C():$b.h($c):$b.f():$a.m(int, $b) @ 0, 3, 5
new

Well-formedness
must be maintained

16

Mutation operators

Constructor change:

$a=A(int):$b=B():$b.f(int):$a.m(int, $b) @ -1, 2, 5

$a=A():$b=B():$b.f(int):$a.m(int, $b) @ 2, 5

17

Mutation operators

Insertion/removal of method call:

$a=A(int):$b=B():$b.f(int):$a.m(int, $b) @ -1, 2, 5

$a=A(int):$b=B():$a.m(int, $b) @ -1, 5

18

Evolution
During chromosome evolution, each test case
covering a previously uncovered branch is added to
the final test suite
The final test suite is minimized by means of a
greedy heuristics

19

eToc++: a tool for the
evolutionary testing of C++
classes

20

Branch instrumentor
Every control flow branch has to be uniquely
identified and traced upon execution
The reflection capabilities of OpenC++ (source-to-
source transformation) are exploited to instrument
the code, by adding tracing instructions
The instrumented code is printed to file

21

Chromosome former
Builds chromosomes randomly for the initial
population
Changes chromosomes according to the mutation
operators
Produces input values using the default,
parameterized or customized generators

22

Test case generator
Implements the genetic algorithm
Uses Cint to execute test cases encoded as
chromosomes and to determine the execution traces
Applies a greedy minimization procedure on the
resulting test suite
Produces a CppUnit test class as output
Assertions must be eventually added manually

23

State of the project

24

Migration to Aspect
Oriented Programming

25

Crosscutting concerns

Crosscutting concerns are inherent in any
complex applications
Aspects provide a mechanism to factorize them

Example:Example:

SynchronizationSynchronization
code in a multicode in a multi--
thread thread
applicationapplication

26

Join points

A join point is a well-defined point in the
program flow, where execution can be
intercepted by an aspect.

Aspectjoinpointjoinpoint

joinpointjoinpoint

27

Pointcuts

Pointcuts select certain join points and
values at those points.

call(void Point.setX(int))

call(void Point.setX(int)) ||
call(void Point.setY(int))

pointcut move():

call(void FigureElement.setXY(int,int)) ||
call(void Point.setX(int)) ||
call(void Point.setY(int)) ||
call(void Line.setP1(Point)) ||
call(void Line.setP2(Point));

Unnamed pointcuts

Named pointcut

28

Pointcuts

call(void Figure.make*(..))

call(public * Figure.* (..))

Wildcards in pointcuts

cflow(move()) &&
call(void Figure.get*(..))

join points occurring in the context
of another pointcut

29

Advices

Before advice runs when a join point is reached and before
the computation proceeds.
After advice runs after the computation 'under the join point'
finishes.
Around advice runs when the join point is reached, and
blocks the computation under the join point, until an explicit
proceed instruction is executed.

after(): move() {
System.out.println("A figure element moved.");

}

30

Exposing context in
pointcuts

Pointcuts can expose part of the execution
context at their join points.
Values exposed by a pointcut can be used in the
body of the advice.

pointcut setXY(FigureElement fe, int x, int y):
call(void FigureElement.setXY(int, int)) &&
target(fe) && args(x, y);

after(FigureElement fe, int x, int y): setXY(fe, x, y) {
System.out.println(fe + " moved to (" + x +
", " + y + ").");

}

31

Introductions

An introduction can
add methods to an existing class
add fields to an existing class
extend an existing class with another
implement an interface in an existing class
convert checked exceptions into unchecked exceptions

aspect CloneablePoint {

declare parents: Point implements Cloneable;

declare soft: CloneNotSupportedException:
execution(Object clone());

Object Point.clone() {
return new Point(x, y);

}

}

32

Ex
am

pl
e:

 O
bs

er
ve

r
de

si
gn

 p
at

te
rn

aspect PointObserving {

private Vector Point.observers = new Vector();

public static void addObserver(Point p, Screen s) {
p.observers.add(s);

}

public static void removeObserver(Point p, Screen s) {
p.observers.remove(s);

}

pointcut changes(Point p): target(p) &&
call(void Point.set*(int));

after(Point p): changes(p) {
Iterator iter = p.observers.iterator();
while (iter.hasNext()) {

updateObserver(p, (Screen)iter.next());

}

}

static void updateObserver(Point p, Screen s) {
s.display(p);

}

}

33

Aspects to be investigated
during the project
1. Debug: printout of function calls, including input

and output values (before/after the call)
2. Counter: how often is a function called and from

where.
3. Timer: how much time is spent in a function
4. Memory: how much memory is used/allocated by

functions
5. Histogramming: fill debug values, counters,

timings into a histogram

34

AspectC++

General-purpose aspect-oriented extension
to C/C++
The compiler is freely available under the
GPL license
http://www.aspectc.org/

35

State of the project

Preliminary assessment of AspectC++ gave
positive results
Prototype implementation of the debug
aspect in AspectC++

36

Code smell detection

37

Refactoring

Disciplined way to clean up code.
The design of the system is improved after the code has
been written.
Design occurs continuously during development.
The risks associated with the production of a good design
from the very beginning are reduced.

Refactoring is the process of changing a software
system in such a way that it does not alter the external
behavior of the code, while it improves its internal
structure.

38

Extract method

Refactoring Extract Method: When a sequence of logically
related statements can be grouped together, they can be
turned into the body of a method, whose name should explain
the isolated behavior. Referenced variables should be made
available as parameters and/or return values, if not visible.

39

Renaming

Good code should communicate what it is doing clearly, and variable names
are a key to clear code. Anybody can write code that a computer can
understand. Good programmers write code that humans can understand.

Refactoring Renaming: If the name of an entity does not
reveal its purpose, it should be changed. All references to such
an entity must be changed accordingly. Moreover, conflicts
with existing entities must be avoided when choosing the new
name.

…

amountFor(Rental each)

…

amountFor(Rental aRental)

40

Move method

Refactoring Move Method: If a method is, or will be, using or used by
more features of another class than the class in which it is defined, a new
method with a similar body can be created in the class it uses most. The
old method can either be turned into a simple delegation, or it can be
removed altogether.

41

Introducing polymorphism

If conditional code is present, each time a new type is
added, all conditionals sparsed in the code have to
be found and updated.
On the contrary, if conditional code is replaced with
polymorphism, it is sufficient creating a new subclass and
providing the appropriate methods.
Clients of a class don't need to know about the subclasses,
thus reducing the dependencies in the system and
simplifying its update.

Polymorphism allows avoiding an explicit conditional when
the behavior of an object depends on its type.

42

Code smells

Indicators of areas of the programs where
refactoring could be beneficial
Smells can be detected automatically, but the
final assessment of the actual need of
refactoring is manual (both false positives
and false negatives are expected)

43

Smell detector

Suggest improvements to programmers
Identify problematic sub-systems (those with
more smell detected)
Guide code inspection
Help reasoning on overall design

Smell: code duplication
Instances: A::f(), line 5-25, file A.cxx; B::g(), …
Suggested actions: move computation …

44

Preliminary list of code
smells

1. Code duplication
2. Long methods
3. Parallel inheritance hierarchies
4. Message chains
5. Large classes with low cohesion
6. Feature envy (high coupling)
7. Switch statements
8. Data class
9. Refused bequest (inherited features remain unused)
10. Data clumps (data clusters not grouped into a class)

45

State of the project

The reflection capabilities of OpenC++ have
been assessed and judged adequate for the
smell detection task
A preliminary list of code smells was
defined (see previous slide)

46

Conclusions

The project will give us the opportunity to
investigate advanced research topics
Project deliverables consist of research
prototypes to be possibly integrated into the
CERN software process infrastructure
Working with large and complex C++
systems will give us the possibility to conduct
interesting empirical studies on the
usefulness of the investigated techniques

