
1

Small Files at PIC
Emilio Hernández

Castor Meeting
Barcelona, Nov 17th 2004

Agenda

● Definition of requirements
● First experiences storing medical
images (medical image=small file) using
Castor

● Solutions based on automounting
● We would like...

2

UDIAT-PIC collaboration

5 TB of images per year
Local HD cache for 3 years

UDIAT PIC

Petabyte tape library
Processing PC farm

Anella científica

Collaboration goals

● Backup of medical images

– Format: DICOM

– File size range from 30K ~ 13MB

– Daily backup size: 5GB ~ 20GB
– They upload the images produced the day before

● Retrieval of images

– Clinical purposes: query for individual images, probably from
the same patient (near-line access)

– Research purposes: creation of datasets by sweeping the
whole image database (batch processing)

3

Initial solution
● First solution:

– Images stored as independent Castor files

– Upload operations via ftp from UDIAT

– A Castor-ready ftp server used

– UDIAT defined the directory hierarchy (they chose to have a
subdirectory per day)

● Problems:
– The tape backup system (tape library+Castor) collapsed

– ~200.000 files waiting for migration

– Clinical query requirements can be served

– Upload and research requirements will be difficult to serve

Automounter solution
● Second solution:

– First-level directories stored as single archive files (e.g.
ISO or tar files), we call these files “volumes”

– An automounter handles image retrieval from volumes
– UDIAT is semi-aware of the existence of volumes

● They upload their images as before
● They should try to achieve data balance among first-level

directories; one directory per day is fine in this case
● There may be different connection instructions for image upload

and image retrieval

– The amount of files that Castor handles is reduced from
hundreds of thousands to a max of 366 per year

4

Upload/Retireve Operations
● Uploading/Modifying:

– We expect “modifying” operations to be infrequent
– A “normal” ftp server is used to upload the images into a working

directory
– First-level directory upload is followed by a “volume migration”

operation; after that, volume information is ready to be retrieved
– Mount/umount scripts are triggered by the automounter

● mount: “rfcp /castor/.../volume ./volume” + “unpack volume ./working_dir”
(an empty working_dir is created if the volume does not exist in Castor)

● umount: “pack ./working_dir > volume” + “rfcp volume /castor/.../volume”
● Image Retrieval:

– Mount/umount scripts are triggered by the automounter
● mount: “stagein volume” + “protect_from_GC volume” + “mount -o loop

stage_server:volume ./working_dir”
● umount: “umount ./working_dir”, “release_for_GC volume”

Operation

FTP server for
uploading/modifying

Tape
robot

Upload
individual
files

Volumes
(ISO
files)Image

query

FTP server
for retrieval

UDIAT

Staging
cache

Stage-in
of volume

Mount volumes
as loop devices,
via NFS

Required
image

Staging
cache

5

Retrieve/Modify asymmetry

● With this solution
– Retrieve operations require a single volume copy on open (tape ->

staging area) and no copy on close

– Modify operations require three volume copies on open (tape ->
staging area + staging area -> working directory + unpack to a
working directory) and three volume copies on close (pack to an
archive file, copy file into the staging area + migration)

● Potential problems
– Modify operation too heavy (a writeable file system can be used to

avoid the pack/unpack data copy)

– Data is not uniformly distributed among volumes

Achieving data balance with
transparency

● Third solution (more flexible for users):

– Volumes do not correspond to directories (no restrictions on the
directory hierarchy)

– “Volume migration” includes an algorithm for reading the user
directory structure and mapping files to volumes. This algorithm
would try to balance the amount of data among the volumes

– Archive files are generated for each volume and written in Castor

– A persistent hash table could be used to keep the matches between
names in the directory structure defined by the user and names in
the volume structure

– The automounter would have to be modified in order to implement
the name association, based on the hash table

6

Letter to Santa
● Ideal solution (for us):

– Third solution implemented within Castor
– The name server would have an additional indirection level

(corresponding to our hash table)

– No need of the automounter because the image is retrieved directly
from Castor

● Note:
– A retrieve operation would produce a transfer of the whole volume

into the staging area

– A volume may correspond to a Virtual Tape within Storagetek VSM

– Tricky but not that much: the data balance algorithm

Thanks!

