:LCG

GDML - recent developments

Witek Pokorski

29.11.2004

W. Pokorski - EP/SFT Simulation Project 1

Outline

:LCG

e Some background info
e GDML Schema

o GDML readers/writers
* Some examples

e Conclusion

W. Pokorski - EP/SFT Simulation Project

GDML - historical background... g

» GDML stands for Geometry Description Markup Language

e first appearance around year 2000 (?)

e activity started by Radovan Chytracek
- until ~May 2004 all work done by Radovan

 initial frame: XML based geometry description for Geant4
e motivation:
- move away from hardcoded geometry
- enable geometry interchange between different applications
o discussed at 'Geometry Description' Requirement
Technical Assessment Group (RTAG), became 'LCG-
supported' project in October 2003

o presently part of the Simulation Framework subproject
(Simulation Project), as the geometry interchange format

workpackage
W. Pokorski - EP/SFT Simulation Project 3

GDML - ideological background... g

ﬂpurpose of GDML is to describe data)

»to dump geometry data
»not procedural, but markup language

oformat has to be application independent
»there is nothing more universal than an ASCII file

o'human-readability’ is a big advantage
»there is nothing more readable than an ASCII file...

sshould be easily extensible and modular

_ /

— =

GDML designed as an application of XML

W. Pokorski - EP/SFT Simulation Project 4

GDML - technical background... -

e GDML is defined through XML Schema (XSD)
- XSD = XML based alternative to Document Type Definition (DTD)
- defines document structure and the list of legal elements
- XSD are in XML -> they are extensible

e valid GDML document conforms to GDML schema

 GDML would be useless without I/0...
o C++ implementation of GDML processor was started (by Radovan) in
parallel to GDML Schema
- allows writing-out GDML data to a stream

- uses Xerces-C SAX parser to create 'in-memory' representation of the
geometry description

- allows easy bindings to different applications (Geant4, ROOT)

 alternative Python-based processing architecture under development
- uses xml.sax Python module
- allows very light binding to applications

W. Pokorski - EP/SFT Simulation Project 5

:LCG

GDML Schema

W. Pokorski - EP/SFT Simulation Project 6

GDML Schema - structure (1/2) 5‘%‘

e |ocated in $GDML_BASE/GDMLSchema/

 top level file: gdml_X.Y.xsd

 defines the general structure of GDML document
- specifies the geometry tree implementation

e includes

- gdml_simple_core.xsd (core types - vectors, etc)
gdml_simple_defines.xsd (constants, positions, rotations, etc)
gdml_simple_materials.xsd (elements, isotopes, materials, etc)
gdml_simple_solids.xsd (all supported solids)
gdml_simple_replicas.xsd (replicas, divisions, etc)
gdml_simple_parameterised.xsd (parameterised volumes)

W. Pokorski - EP/SFT Simulation Project 7

GDML Schema - structure (2/2)

<?xml version="1.0" encoding="UTF-8"?>
<gdml xsi:nroNamespaceSchemaLocation="GDMLSchema/gdml 2.0.xsd">
— <define>

<position name="Trackerin Worldpos" urit="m m" x="0" y="0" z="100" />
N— </define>
/. <materials>

<materal formula=" "name="2Air" >
<D value="1.290" unit="mg/cm3"/>
<fractdon n="0.7" ref="Nitrogen" />
<fractdion n="0.3" ref="Oxygen" />

\ </ material >
</ materials>
< salids>

:box lunit="mm" name="Tracker" x="50" y="50" z="50" />
— </salids>

/ <structure>

:volume name="World" >
< materialref ref="Air" />
<salidref ref="world" />

<physval>
<valumeref ref="Tracker" />
<positionref ref="Trackerin Worldpos" />
<rctatornref ref="Trackerin Worldrct" />
</physval >
K </valume >
</structure>

<world ref="World" />
</setup>
</gdml>

C <setup name="Defaul" version="1.0" >

W. Pokorski - EP/SFT Simulation Project 8

GDML Schema - status 5‘5‘

e about to release GDML _2.0.0

o core, defines, materials schema - complete

» solids supported:

- box, sphere (G4Sphere and G40rb), tube, cone, polycone,
parallepiped, trapezoid (G4Trap and G4Trd), torus, polyhedra,
hype (tube with hyperbolic profile), elliptical tube

- boolean solids:
- union, subtraction, intersection

e assembly volumes supported
 replicas and divisions (on their way)

e parameterised volumes (position, rotation and size)
- gradually adding parameterisation capability for all the solids

W. Pokorski - EP/SFT Simulation Project 9

Parameterised volumes in GDML i‘t‘:‘

* how could we persistify parameterisation
algorithms?

e the only (?) way: to dump the parameters as a table
- we cannot 'guess' the form of the function, we can only dump
the values
» while reading back GDML we instantiate 'tabularised'
parameterisation algorithm
- although the "algorithm' changes with respect to the original
one the resulting parameterised volume should be identical
o this is in the context of GDML as exchange/persistency
format

- to use GDML for geometry implementation ('by hand') some
'predefined’ algorithms will be provided (for ex. linear)

W. Pokorski - EP/SFT Simulation Project 10

Parameterisation example

<valume name="Tracker" >
< materialref ref="Air" />
<salidref ref="tracker" />
<paramvaol ncopies="5" >
<valumeref ref="Chamber" />
<parameterised position size>
<parameters number="1" >
<position name="copylpos" x="0" y="0" z="-700" />
<box dimensions x="672" y="672" z="100" />
</parameters>
<parameters number="2" >
<position name="copy2pos" x="0" y="0" z="100" />
<box dimensions x="1104" y="1104" z="100" />
</parameters>
<parameters number="3" >
<position name="copy3pos" x="0" y="0" z="900" />
<box dimensions x="1536" y="1536" z="100" />
</parameters>
<parameters number="4" >
<position name="copy4pos" x="0" y="0" z="1700" />
<box dimensions x="1968" y="1968" z="100" />
</parameters>
<parameters number="5" >
<position name="copy5pos" x="0" y="0" z="2500" />
<box dimensions x="2400" y="2400" z="100" />
</parameters>
</parameterised position size>
</paramvaol>
</valume >

W. Pokorski - EP/SFT Simulation Project 11

:LCG

GDML Readers/Writers

W. Pokorski - EP/SFT Simulation Project 12

GDML reader - structure

:LCG

purpose: to (re)create the
transient representation
of geometry tree

e most logic in application-
independent part

Application binding

give pointer to
world volume

/

Application

(ROOT, G4)

create material,
volume, etc...

 light application- :
. XML Engine
depended bindings / (SAX)
/]
i
XML Schema GDML

W. Pokorski - EP/SFT

Simulation Project

* (ROOT, G4)

GDML reader - status 5‘5‘

* C++ implementation:

o application-independent part complete for the present
schema

» application-dependent part:
- complete for Geant4
- on its way for ROOT...

e runs on rh73_gcc323, Cygwin, Mac OS X

» Python implementation:
* see next slides...

W. Pokorski - EP/SFT Simulation Project 14

GDML writer - structure 5‘%‘

e purpose: to persistify the GDML
geometry description in A
the form of GDML file

write document

Document Builder

» application independent part
generating XML
- 'cursors' for materials,
solids, structure, etc Application binding
» 'light' application dependent (scanning tree)
bindings 7y
- scanning the geometry tree

and adding elements to the
‘cursors'

T add volume, etc

dump geometry

Application

W. Pokorski - EP/SFT Simulation Project 15

GDML writer - status 5‘%‘

* C++ implementation:

o application-independent part complete for the present
schema

» application-dependent part:
- complete for Geant4
- on its way for ROOT...

e runs on rh73_gcc323, Cygwin, Mac OS X

* Python implementation:
e next item on my 'to do' list...

W. Pokorski - EP/SFT Simulation Project 16

GDML - example use (G4)

to write:

#include "WriterG4/G4GDMLWriter.h"
G4GDMLWriter g4writer("GDMLSchema/gdml_2.0.xsd", "g4test.gdml");

t
{ry

—l gdwriter.DumpGeometrylnfo(g4worldvolume);
catch(std::logic_error &lerr)
std::cout << "Caught an exception: " << lerr.what () << std::endl;

to read:

SAXProcessor sxp;
sxp.Initialize();
ProcessingConfigurator config;
config.SetURI("g4test.gdml");
config.SetSetupName("Default");
sxp.Configure(&config);

sxp.Run()
== fWorld = (G4VPhysicalVolume *)GDMLProcessor::Getlnstance()->GetWorldVolume();

W. Pokorski - EP/SFT Simulation Project 17

GDML processing - performance -

 GDML G4reader/G4writer (C++) tested on

o complete LHCb geometry

o parts of ATLAS geometry
- problem with full ATLAS geometry - use of custom solids

e for LHCb geOmetry (~5000 single placements, ~20 million 'real' vols.)
e writing out ~10 seconds (on P4 2.4GHz)
e reading in ~ 5 seconds
o file size ~2.7 Mb (~40k lines)

o also successfully tested G4->GDML->G4->RO0T
o for G4->ROO0T, converter by Ivana Hrivhacova used

W. Pokorski - EP/SFT Simulation Project 18

:LCG

GDML reader/writer revisited

» Python - an interesting alternative to C++ for
implementing the GDML processing code
e dealing with XML in Python much easier (less code
needed)
o Python very good for 'glueing’ different applications
together
e very easy interaction with C++ objects through:

- PyROOT for ROOT classes
- LCGDict/PyLCGDict for Geant4 classes (or any other C++
classes)

W. Pokorski - EP/SFT Simulation Project 19

PyGDML - status -

e first implementation of GDML->ROOT reader
ready

e uses xml.sax Python module
o uses PyROOT for accessing ROOT classes

» application-specific part very small (~150 lines of
Python)

- Geant4 binding ready in a day or two...

o works for full LHCb geometry
* GDML file -> 'in-memory' ROOT TGeo

e next task: ROOT->GDML writer

W. Pokorski - EP/SFT Simulation Project 20

PyGDML - example (ROOT)

. Python SAX parser
import xml.sax/ PyROOT
import ROOT
import GDMLContentHandler «—— GDML-specific parser extension

ROOT.gSystem.Load("libGeom")
geomgr = ROOT.TGeoManager("World","GDMLGeo") Standard TGeo

gdmlhandler = GDMLContentHandler. GDMLContentHandler() _
xml.sax.parse('test.gdml',gdmlhandler) GDML parsing

geomgr.SetTopVolume(gdmlhandler.WorldVolume())

geomgr.CloseGeometry() \

gdmlhandler.WorldVolume().Draw() get world volume from
GDMLContentHandler

W. Pokorski - EP/SFT Simulation Project 21

Example use case =

¢ someone provides:
1. testbeam geometry exported to GDML

2. dictionary for sensitive detector implementation
created with LCGDict (so one can instantiate it in
Python and associate it to the specific volume)

- someone else uses it to:

1. load geometry in Python

2. run Geant4 in Python
this comes almost for free using PyLCGDict/LCGDict

3. run other simulation using VMC (?)
4. plot different distributions with ROOT (using PyROQOT)
5. and/or check for overlaps in geometry with ROOT p==

W. Pokorski - EP/SFT Simulation Project 22

Conclusions =5

» there is no doubt about the need to have a geometry
exchange format

e GDML - good candidate
» universal format (ASCII...)

* human-readable
» extensible

» interest in GDML from many places
» motivating and proving usefulness

o Python interfacing provides flexibility
 high priority given to GDML in LCG Simulation Framework
subproject

» development of Geant4 and ROOT bindings will continue with
regular releases ——

W. Pokorski - EP/SFT Simulation Project 23

