
VMC workshop 1

Ideas for G4 navigation interface
using ROOT geometry

A.Gheata

VMC Workshop, 29-30 Nov. 04

VMC workshop 2Ideas for G4+TGeo

Outline

Motivations
Requirements and observations
Correspondence between G4-TGeo geometry
objects/features
A possible strategy
Conclusions

VMC workshop 3Ideas for G4+TGeo

Motivations

Possibility to compare G3,G4 and FLUKA simulations having the
same geometry model behind

We have it for G3/FLUKA – it will insure consistency at navigation
level
Allows usage of TGeo as a simulation engine - neutral geometry in
the reconstruction framework

VMC provides already an interface to G4 and geometry
converters ROOT G4 (see talk from Ivana)

What is existing is a big step forward without any doubt, but:
Some limitations in mapping certain features available in VMC to
G4,
Geometry conversions limited to the common denominator of
candidates,
Possibility of ROOT geometry usage within TGeant4 will certainly
give more flexibility

Possibility of a cross-check between navigation algorithms G4-
ROOT

VMC workshop 4Ideas for G4+TGeo

G4Navigator requirements

Pure geometrical queries – taking
point,vector,flags as input and returning
distance/flags

ComputeStep(), ComputeSafety(),
GetLocalExitNormal()

Geometrical queries requiring a geometrical
state as input (G4VTouchable - derived
objects)

Local-to-Global and Global-to-local transformations

VMC workshop 5Ideas for G4+TGeo

G4Navigator requirements (cont)

Geometry queries finding a state and/or
acting on a state

ResetHierarchyAndLocate(),
LocateGlobalPointAndXXX()

Geometrical state management and handles,
utilities

CreateTouchableHistory(),
CreateTouchableHandle()
CreateGRSVolume/Solid(), Set/GetWorldVolume()

VMC workshop 6Ideas for G4+TGeo

Preliminary observations (1)

G4NavigatorG4Navigator is an abstract base class, but
besides computing pure geometrical
parameters, it provides/handles/acts on G4
native geometrical objects

This is natural for any OO framework, besides –
geometry is not just a set of numbers giving back
distances or in/out flags, but also objects
embedding information required at tracking time
It does not make life easier compared to
interfacing a FOTRAN navigator, it just introduces
an additional dimension to the problem that HAVE
to be dealt with

VMC workshop 7Ideas for G4+TGeo

Preliminary observations (2)

Once the previous fact is established, we have to
look on:

Which are the G4 geometrical classes that are really
required for navigation ?
What is the mapping between G4 objects and TGeo ones –
is there a 1/1 correspondence ?
Are the methods purely related to navigation corresponding
to what is offered by TGeo ?

Knowing all this, what is the best strategy to follow ?
Requiring as less as possible development effort, but
providing needed functionality
Optimizing performance at low memory cost – what is the
“good compromise”

VMC workshop 8Ideas for G4+TGeo

Correspondence between G4 TGeo
geometrical objects

G4VSolid TGeoShape
Both abstract base classes with several implementations
Same quantities computed: In/Out, distance to boundary, safety,
normal to exit point
One-to-one correspondence for all G4 solids to TGeo shapes (HYPE
was missing but now implemented)
Some extra shapes with very low usage (so far) in TGeo:
TGeoArb8, TGeoXtru, TGeoParaboloid

Interface class: TG4Solid : public G4VSolid
Implementation is mandatory
Data member: TGeoShape *fShape
All query methods can be mapped
One limitation: point classification as ON BOUNDARY – missing in
TGeo. It will be implemented if required by navigation.

VMC workshop 9Ideas for G4+TGeo

Correspondence G4 TGeo (2)

G4VPhysicalVolume TGeoNode
A volume positioned relative to its container
Same functionality
Slightly different structures and some differences in
parameterization (divisions) treatment – not a stumbling
block in the VMC approach

Interface class: TG4PhysicalVolume : public
G4VPhysicalVolume

Data members: TGeoNode *fNode, TG4LogicalVolume
*fVolume , *fMother ! (see later)
A mapping TGeoNode => TG4PhysicalVolume absolutely
needed since TGeoNode is the object provided by TGeo
navigation methods

VMC workshop 10Ideas for G4+TGeo

Correspondence G4 TGeo (3)

G4VTouchable TGeoCacheState
Representing a geometrical “touchable” unique object, e.g. a
branch in the logical volume hierarchy
Created by the navigation interface, ref.-counted handles
can be asked also by users
Temporary object during TGeo navigation, but supports
push/pop mechanism

Interface: TG4StatePool – a pool of TG4VTouchable
pre-built objects + ref-count handle mechanism

TG4VTouchable : public G4VTouchable, holding the current
branch of TG4PhysicalVolume objects

VMC workshop 11Ideas for G4+TGeo

Other G4 object needed

G4LogicalVolume TGeoVolume
None abstract, both key elements in the logical hierarchy !
Not directly manipulated by TG4Navigator, but required
from G4VTouchable/G4VPhysicalVolume by physics
processes.

Replicas, division, parameterisations
First 2 more or less the same in TGeo, third different
Tracking requires/acts according this information
May affect only when converting parameterized G4
geometries to TGeo

VMC workshop 12Ideas for G4+TGeo

A possible strategy

Step 1: TGeoShape acting as G4VSolid
Most easy to implement, probably the very first step to do
Instead of creating a native G4 solid make rather an object having
a pointer to the corresponding ROOT shape.
Does not need full ROOT geometry to be built
Requires just the new derived class TG4Solid + few modifications
in the existing GEANT4 VMC
Allows immediately a direct testing/cross check for
query/classification algorithms at the level of solids

Step2: Implementation of the mechanism of handling geometry
states in G4 style as an addition to the current stack style in
TGeo

Can be done at the level of the interface, but also direcly in TGeo
Not a tremendous effort – can be plugged in the interface once
ready

VMC workshop 13Ideas for G4+TGeo

Strategy (cont)

Step 3: Interfacing/mapping G4 and TGeo logical
hierarchies

G4 needs its G4LogicalVolume objects => we have to
provide them
Basically 2 ways for doing this:

Pool of limited number of objects of this type, as in the case of
touchables

Several complications related to the fact that these are not virtual
objects + heavy interface management

Just create and store full G4 logical tree in memory, in parallel
with TGeo ones

Size less than 10 MBytes for geometries like ALICE or ATLAS
Will surely make the implementation easier

Connect the physical volume list as
vector<TG4PhysicalNode*> and create the mapping
TGeoNode->TG4PhysicalNode

VMC workshop 14Ideas for G4+TGeo

Strategy (last)

Step 4: Once we have all the infrastructure,
implement all required navigation methods in
TG4RootNavigator : public G4Navigator

Most methods have a 1/1 correspondence with
TGeoManager methods, or are just derived
queries that can be factorized in a manageable
way

One need to have in mind getting to this
interface either from TGeo representation or
even from G4 native

VMC workshop 15Ideas for G4+TGeo

Conclusions

Interfacing G4 navigation with TGeo is a challenge, but can be
implemented in a reasonable amount of time (6 months)

Created as an option within the current TGeant4, will require less
effort and benefit of the existing interface

Step by step operation, may come-up with some first results
much earlier than expected even if full validation will definitely
be longer
GEANT4 team is supporting this – will give more flexibility and
use cases both to VMC and G4 users
No major stumbling block: G4 and TGeo geometries are alike

Good policy: provide support for what is incompatible/missing in
TGeo but required by G4Navigator, minimize additional structures
to be managed at the level of the interface

