
The LCG Service Challenges and GridPP

Jamie Shiers, CERN-IT-GD 31 January 2005

Agenda

- Reminder of the Goals and Timelines of the LCG Service Challenges
- Summary of LHC Experiments' Computing Models
- Outline of Service Challenges
- Review of SC1
- Status of SC2
- Plans for SC3 and beyond

Why am I here?

As we will see in more detail later:

- Summer 2005: SC3 include 2 Tier2s; progressively add more
 - Summer / Fall 2006: SC4 complete
 - SC4 full computing model services
 - Tier-0, ALL Tier-1s, all major Tier-2s operational at full target data rates (~1.8 GB/sec at Tier-0)
 - acquisition reconstruction recording distribution, PLUS ESD skimming, servicing Tier-2s

How many Tier2s?

- ATLAS: already identified 29
- CMS: some 25
- With overlap, assume some 50 T2s total(?)

This means that in the 12 months from ~August 2005 we have to add 2 T2s per week

- Cannot possibly be done using the same model as for T1s
 - SC meeting at a T1 as it begins to come online for service challenges
 - Typically 2 day (lunchtime lunchtime meeting

GDB / SC meetings / T1 visit Plan

- In addition to planned GDB meetings, Service Challenge Meetings, Network Meetings etc:
- Visits to all Tier1 sites (initially)
 - Goal is to meet as many of the players as possible
 - Not just GDB representatives! Equivalents of Vlado etc.
- Current Schedule:
 - Aim to complete many of European sites by Easter
 - "Round world" trip to BNL / FNAL / Triumf / ASCC in April
- Need to address also Tier2s
 - Cannot be done in the same way!
 - Work through existing structures, e.g.
 - HEPiX, national and regional bodies etc.
 - e.g. GridPP (12)
- Talking of SC Update at May HEPiX (FZK) with more extensive programme at Fall HEPiX (SLAC)
 - Maybe some sort of North American T2-fest around this?

LCG Service Challenges - Overview

- LHC will enter production (physics) in April 2007
 - Will generate an enormous volume of data
 - Will require huge amount of processing power
- LCG 'solution' is a world-wide Grid
 - Many components understood, deployed, tested..
- But...
 - Unprecedented scale
 - Humungous challenge of getting large numbers of institutes and individuals, all with existing, sometimes conflicting commitments, to work together
- LCG must be ready at full production capacity, functionality and reliability in less than 2 years from now
 - Issues include h/w acquisition, personnel hiring and training, vendor rollout schedules etc.
- Should not limit ability of physicist to exploit performance of detectors nor LHC's physics potential
 - Whilst being stable, reliable and easy to use

Key Principles

- Service challenges results in a <u>series</u> of services that exist in <u>parallel</u> with <u>baseline production</u> service
- Rapidly and successively approach production needs of LHC
- Initial focus: core (data management) services
- Swiftly expand out to cover <u>full spectrum</u> of production and analysis chain
- Must be as realistic as possible, including end-end testing of key experiment <u>use-cases</u> over extended periods with recovery from <u>glitches</u> and <u>longer-term</u> outages
- Necessary resources and commitment pre-requisite to success!
- Should not be under-estimated!

Initial Schedule (1/2)

- Tentatively suggest quarterly schedule with monthly reporting
 - e.g. Service Challenge Meetings / GDB respectively
 - Less than 7 complete cycles to go!
- Urgent to have detailed schedule for 2005 with at least an outline for remainder of period asap
 - e.g. end January 2005
- Must be developed together with key partners
 - Experiments, other groups in IT, T1s, ...
- Will be regularly refined, ever increasing detail...
- Detail must be such that partners can develop their own internal plans and to say what is and what is not possible
 - e.g. FIO group, T1s, ...

Initial Schedule (2/2)

- Q1 / Q2: up to 5 T1s, writing to tape at 50MB/s per T1 (no expts)
- Q3 / Q4: include two experiments and a few selected T2s
- 2006: progressively add more T2s, more experiments, ramp up to twice nominal data rate
- 2006: production usage by all experiments at reduced rates (cosmics); validation of computing models
- 2007: delivery and contingency
- > N.B. there is more detail in December GDB presentations
- Need to be re-worked now!

Agenda

- Reminder of the Goals and Timelines of the LCG Service Challenges
- Summary of LHC Experiments' Computing Models
- Outline of Service Challenges
- Review of SC1
- Status of SC2
- Plans for SC3 and beyond

Computing Model Summary - Goals

- Present key features of LHC experiments' Computing Models in a consistent manner
- High-light the commonality
- Emphasize the key differences
- Define these 'parameters' in a central place (LCG web)
 - Update with change-log as required
- Use these parameters as input to requirements for Service Challenges
- To enable partners (TO/T1 sites, experiments, network providers) to have a clear understanding of what is required of them
- Define precise terms and 'factors'

Where do these numbers come from?

- Based on Computing Model presentations given to GDB in December 2004 and to TO/T1 networking meeting in January 2005
 - Documents are those publicly available for January LHCC review
 - Sofficial website is protected

Some details may change but the overall conclusions do not!

- Part of plan is to understand how sensitive overall model is to variations in key parameters
- Iteration with experiments is on-going
 - i.e. I have tried to clarify any questions that I have had

Any mis-representation or mis-interpretation is entirely my responsibility

Sanity check: compare with numbers from MoU Task Force

CERN	Nominal	These are the raw figures produced by multiplying e.g. event size x trigger rate.					
oup, (Headroom	A factor of 1.5 that is applied to cater for peak rates.					
nt Gr	Efficiency	A factor of 2 to ensure networks run at less than 50% load.					
LCG Project, Grid Deployment	Recovery	A factor of 2 to ensure that backlogs can be cleared within 24 – 48 hours and to allow the load from a failed Tier1 to be switched over to others.					
	Total Requirement	 A factor of 6 must be applied to the nominal values to obtain the bandwidth that must be provisioned. Arguably this is an over-estimate, as "Recovery" and "Peak load" conditions are presumably relatively infrequent, and can also be smoothed out using appropriately sized transfer buffers. 					
		But as there may be under-estimates elsewhere					

All numbers presented will be <u>nominal</u> unless explicitly specified

Overview of pp running

	-		-				
Experiment	SIM	SIMESD	RAW	Trigger	RECO	AOD	TAG
ALICE	400KB	40KB	1MB	100Hz	200KB	50KB	10KB
ATLAS	2MB	500KB	1.6MB	200Hz	500KB	100KB	1KB
CMS	2MB	400KB	1.5MB	150Hz	250KB	50KB	10KB
LHCb		400KB	25KB	2KHz	75KB	25KB	1KB

pp questions / uncertainties

- Trigger rates essentially independent of luminosity
 - Explicitly stated in both ATLAS and CMS CM docs
- Uncertainty (at least in my mind) on issues such as zero suppression, compaction etc of raw data sizes
 - Discussion of these factors in CMS CM doc p22:
- RAW data size ~300kB (Estimated from MC)
 - Multiplicative factors drawn from CDF experience
 - MC Underestimation factor 1.6
 - HLT Inflation of RAW Data, factor 1.25
 - Startup, thresholds, zero suppression,.... Factor 2.5
 - Real initial event size more like 1.5MB
 - Could be anywhere between 1 and 2 MB
 - Hard to deduce when the even size will fall and how that will be compensated by increasing Luminosity
- i.e. total factor = 5 for CMS raw data
- N.B. must consider not only Data Type (e.g. result of Reconstruction) but also how it is used
 - e.g. compare how Data Types are used in LHCb compared to CMS
- All this must be plugged into the meta-model!

Experiment	SIM	SIMESD	RAW	Trigger	RECO	AOD	TAG
ALICE	300MB	2.1MB	12.5MB	100Hz	2.5MB	250KB	10KB
ATLAS			5MB	50Hz			
CMS			7MB	50Hz	1MB	200KB	TBD
LHCb	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Heavy Ion Questions / Uncertainties

- Heavy Ion computing models less well established than for pp running
- I am concerned about model for 1st/2nd/3rd pass reconstruction and data distribution
- "We therefore require that these data (Pb-Pb) are reconstructed at the CERN TO and exported over a four-month period after data taking. This should leave enough time for a second and third reconstruction pass at the Tier 1's" (ALICE)
- Heavy Ion model has major impact on those Tier1's supporting these experiments
 - All bar LHCb!
- Critical to clarify these issues as soon as possible...

Data Rates from MoU Task Force

MB/Sec	RAL	FNAL	BNL	FZK	IN2P3	CNAF	PIC	T0 Total
ATLAS	106.87	0.00	173.53	106.87	106.87	106.87	106.87	707.87
СМЅ	69.29	69.29	0.00	69.29	69.29	69.29	69.29	415.71
ALICE	0.00	0.00	0.00	135.21	135.21	135.21	0.00	405.63
LHCb	6.33	0.00	0.00	6.33	6.33	6.33	6.33	31.67
T1 Totals MB/sec	182.49	69.29	173.53	317.69	317.69	317.69	182.49	1560.87
T1 Totals Gb/sec	1.46	0.55	1.39	2.54	2.54	2.54	1.46	12.49
Estimated T1 Dandwidth Needed								
Estimated T1 Bandwidth Needed								
(Totals * 1.5(<i>headroom</i>))*2(<i>capacity</i>)	4.38	1.66	4.16	7.62	7.62	7.62	4.38	37.46
Assumed Bandwidth Provisioned	10.00	10.00	10.00	10.00	10.00	10.00	10.00	70.00

Spreadsheet used to do this calculation will be on Web.

Table is in

http://cern.ch/LCG/MoU%20meeting%20March%2010/Report_to_the_MoU_Task_Force.doc

Data Rates using CM Numbers

Steps:

- Take Excel file used to calculate MoU numbers
- Change one by one the Data Sizes as per latest CM docs
- See how overall network requirements change
- > Need also to confirm that model correctly reflects latest thinking
- And understand how sensitive the calculations are to e.g. changes in RAW event size, # of Tier1s, roles of specific Tier1s etc.

Base Requirements for T1s

- Provisioned bandwidth comes in units of 10Gbits/sec although this is an evolving parameter
 - *From* Reply to Questions from Computing MoU Task Force...
- Since then, some parameters of the Computing Models have changed
- Given the above quantisation, relatively insensitive to small-ish changes
- Important to understand implications of multiple-10Gbit links, particularly for sites with Heavy Ion programme
- For now, need plan for 10Gbit links to all Tier1s

Response from 'Networkers'

[Hans Döbbeling] believe the GEANT2 consortium will be able to deliver the following for the 7 European TIER1s:

- 1. list of networking domains and technical contacts
- 2. time plan of availability of services 1G VPN, 1G Lambda, 10Gig Lambda at the national GEANT2 pops and at the TIER1 sites.
- 3. a model for SLAs and the monitoring of SLAs
- 4. a proposal for operational procedures
- 5. a compilation of possible cost sharing per NREN

Proposes that CERN focuses on issues related to non-European T1s

Agenda

- Reminder of the Goals and Timelines of the LCG Service Challenges
- Summary of LHC Experiments' Computing Models
- Outline of Service Challenges
- Review of SC1
- Status of SC2
- Plans for SC3 and beyond

Service Challenge Meeting

"Review of Service Challenge 1"

James Casey, IT-GD, CERN

RAL, 26 January 2005

Overview

- Reminder of targets for the Service Challenge
- What we did
- What can we learn for SC2?

Milestone I & II Proposal

From NIKHEF/SARA Service Challenge Meeting

Service Challenge Schedule

From FZK Dec Service Challenge Meeting:

SARA - Dec 04

Used a SARA specific solution

- Gridftp running on 32 nodes of SGI supercomputer (teras)
- 3 x 1Gb network links direct to teras.sara.nl
- 3 gridftp servers, one for each link
- Did load balancing from CERN side
 - o 3 oplapro machines transmitted down each 1Gb link
- Used radiant-load-generator script to generate data transfers
- Much efforts was put in from SARA personnel (~1-2 FTEs) before and during the challenge period
- Tests ran from 6-20th December
 - Much time spent debugging components

Problems seen during SC1

Network Instability

- Router electrical problem at CERN
- Interruptions due to network upgrades on CERN test LAN

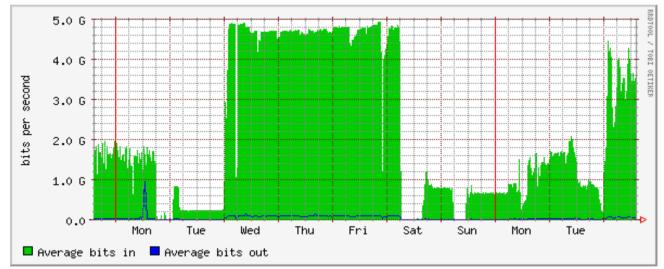
Hardware Instability

- Crashes seen on teras 32-node partition used for challenges
- Disk failure on CERN transfer node
- Software Instability
 - Failed transfers from gridftp. Long timeouts resulted in significant reduction in throughput
 - Problems in gridftp with corrupted files
- Often hard to isolate a problem to the right subsystem

SARA SC1 Summary

Sustained run of 3 days at end

- 6 hosts at CERN side. single stream transfers, 12 files at a time
- Average throughput was 54MB/s
- Error rate on transfers was 2.7%
- Could transfer down each individual network links at ~40MB/s
 - This did not translate into the expected 120MB/s speed
 - Load on teras and oplapro machines was never high (~6-7 for a 32 node teras, < 2 for 2-node oplapro) Load on oplapro machines
- See Service Challenge wiki for logbook kept during Challenge


Gridftp problems

64 bit compatibility problems

- logs negative numbers for file size > 2 GB
- logs erroneous buffer sizes to the logfile if the server is 64-bits
- No checking of file length on transfer
 - No error message doing a third party transfer with corrupted files
- Issues followed up with globus gridftp team
 - First two will be fixed in next version.
 - The issue of how to signal problems during transfers is logged as an enhancement request

FermiLab & FZK - Dec 04/Jan 05

FermiLab declined to take part in Dec 04 sustained challenge

They had already demonstrated 500MB/s for 3 days in November

- FZK started this week
 - Bruno Hoeft will give more details in his site report

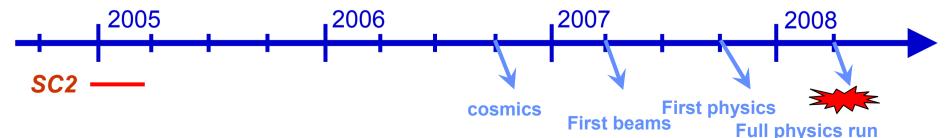
What can we learn ?

SC1 did not succeed

- We did not meet the milestone of 500MB/s for 2 weeks
- We need to do these challenges to see what actually goes wrong
 - A lot of things do, and did, go wrong
- We need better test plans for validating the infrastrcture before the challenges (network throughtput, disk speeds, etc...)
 - Ron Trompert (SARA) has made a first version of this
- We need to proactively fix low-level components
 - Gridftp, etc...
- SC2 and SC3 will be a lot of work !

2

SC2 - Robust Data Transfer Challenge


Set up infrastructure for 6 sites

Fermi, NIKHEF/SARA, GridKa, RAL, CNAF, CCIN2P3

```
Test sites individually
- at least two at 500 MByte/s with CERN
```

Agree on sustained data rates for each participating centre Goal - by end March sustained 500 Mbytes/s aggregate at CERN

In parallel - serve the ATLAS "TierO tests" (needs more discussion)

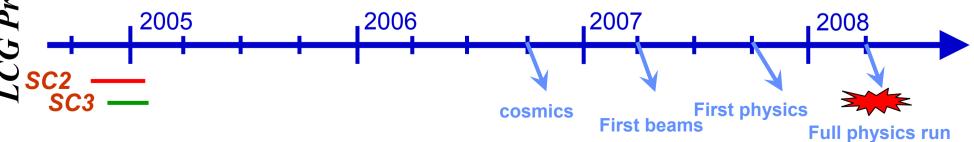
LCG Project, Grid Deployment Group, CERN

2005 Q1(ii)

In parallel with SC2

- prepare for the next service challenge (SC3)

Build up 1 GByte/s *challenge* facility at CERN


The current 500 MByte/s facility used for SC2 will become the *testbed* from April onwards (10 ftp servers, 10 disk servers, network equipment)

Build up infrastructure at each external centre

Average capability ~150 MB/sec at a Tier-1 (to be agreed with each T-1)

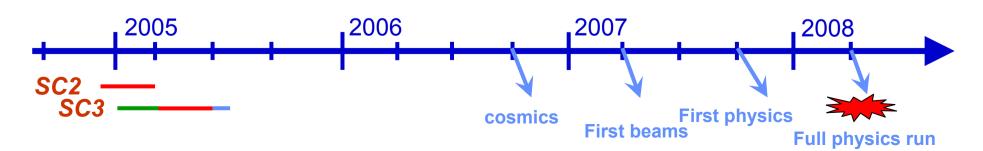
Further develop reliable transfer framework software

Include catalogues, include VO's

2005 Q2-3(i)

SC3 - 50% service infrastructure

- Same T1s as in SC2 (Fermi, NIKHEF/SARA, GridKa, RAL, CNAF, CCIN2P3)
- Add at least two T2s
- "50%" means approximately 50% of the nominal rate of ATLAS+CMS


Using the 1 GByte/s challenge facility at CERN -

- Disk at TO to tape at all T1 sites at 80 Mbyte/s
- Data recording at TO from same disk buffers
- Moderate traffic disk-disk between T1s and T2s

Use ATLAS and CMS files, reconstruction, ESD skimming codes

Goal - 1 month sustained service in July

500 MBytes/s aggregate at CERN, 80 MBytes/s at each T1

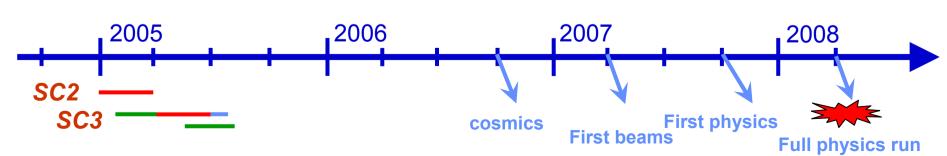
SC3 Planning

- Meetings with other IT groups at CERN to refine goals of SC3 (milestone document) and steps that are necessary to reach them
- IT-GM: definition of middleware required, schedule, acceptance tests etc
- IT-ADC: pre-production and production services required, e.g. Database backends
- IT-FIO: file transfer servers etc etc
- IT-CS: network requirements etc
- Informal discussions with experiments regarding involvement of production teams
- Many details missing: (one being identification of T2s)

SC3 Planning - cont

- Base (i.e. non-experiment) software required for SC3 scheduled for delivery end-February 2005
- Targeting service infrastructure for same date
 - Database services, Gridftp servers etc.
- Acceptance testing during March
- In parallel, have to start discussions with experiments, T1s etc

2005 Q2-3(ii)



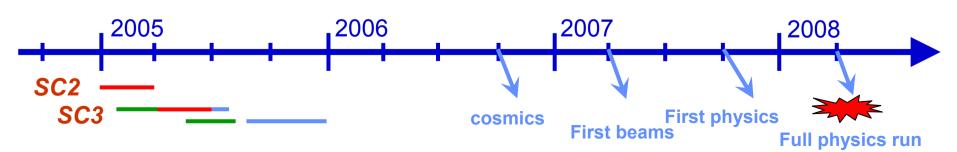
In parallel with SC3 prepare additional centres using the 500 MByte/s test facility

Test Taipei, Vancouver, Brookhaven, additional Tier-2s

Further develop framework software

Catalogues, VO's, use experiment specific solutions

2005 - September-December (i)


50% Computing Model Validation Period

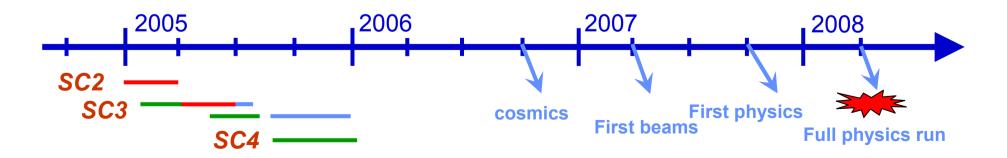
The service exercised in SC3 is made available to experiments for computing model tests

Additional sites are added as they come up to speed

End-to-end data rates -

- 500 Mbytes/s at CERN (aggregate)
- 80 Mbytes/s at Tier-1s
- Modest Tier-2 traffic

2005 - September-December (ii)


In parallel with the SC3 model validation period, in preparation for the first 2006 service challenge (SC4) -

Using 500 MByte/s test facility

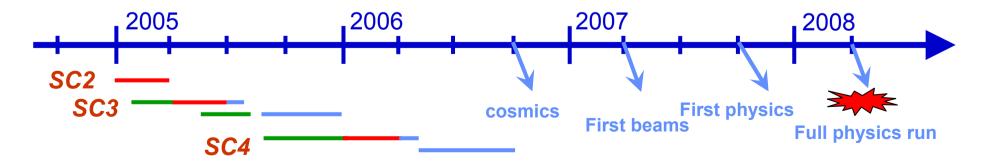
- test PIC and Nordic T1s
- and T2's that are ready (Prague, LAL, UK, INFN, ...

Build up the production facility at CERN to 3.6 GBytes/s

Expand the capability at all Tier-1s to full nominal data rate

2006 - January-August

SC4 - full computing model services

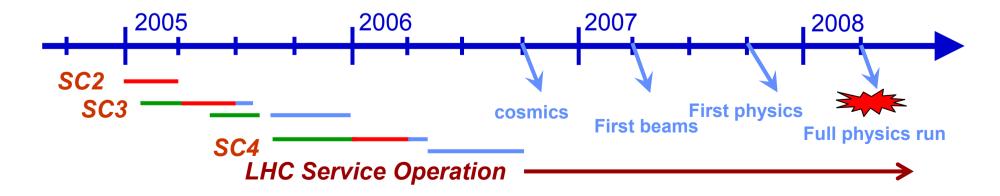

Tier-0, ALL Tier-1s, all major Tier-2s operational at full target data rates (~1.8 GB/sec at Tier-0)
acquisition - reconstruction - recording - distribution,

- **PLUS** ESD skimming, servicing Tier-Žs

Goal - stable test service for one month - April 2006

100% Computing Model Validation Period (May-August 2006) Tier-0/1/2 full model test - All experiments

- 100% nominal data rate, with processing load scaled to 2006 cpus



The SC4 service becomes the permanent LHC service - available for experiments' testing, commissioning, processing of cosmic data, etc.

All centres ramp-up to capacity needed at LHC startup

- TWICE nominal performance
- Milestone to demonstrate this 6 months before first physics data

Timeline

- Official target date for first collisions in LHC: April 2007
- Including ski-week(s), this is only 2 years away!
- But the real target is even earlier!
- Must be ready 6 months prior to data taking
- And data taking starts earlier than colliding beams!
- Cosmics (ATLAS in a few months), calibrations, single beams, ...

Conclusions

- To be ready to fully exploit LHC, significant resources need to be allocated to a series of service challenges by all concerned parties
- These challenges should be seen as an essential on-going and long-term commitment to achieving production LCG
- The countdown has started we are already in (pre-)production mode
- Next stop: 2020