

An example of data management in a Tier $A / 1$

Jean-Yves Nief

C6-1,12123

Overview of BaBar @ CC-IN2P3

- CC-IN2P3: « mirror » site of Slac for BaBar since November 2001:
- real data.
- simulation data.
$($ total $=290$ TB: Objectivity eventstore (obsolete) + ROOT eventstore (new data model))
- Provides the services needed to analyze these data by all the BaBar physicists (data access).
- Provides the data in Lyon within 24/48 hours after production (data management).
- Provides resources for the simulation production.

Data access.

Overview of BaBar@CC-IN2P3 (general considerations)

- Large volume of data (100 's TB).
- Mainly, non modified data(write once, read many times).
- Number of clients accessing the data in // (100's to 1000's):
- Performant access necessary: Latency time reduced.
- Data volume / demand increasing over time: Scalability.
- Using distributed architectures:
- Fault tolerance.
- Hybrid storage (tapes + disk):
- Transparent access to the data on tapes.
- Transparent disk cache management.

BaBar usage @ CC-IN2P3

- 2002 - 2004: ~ 20-30\% of the CPU available.
- Up to 600 users' jobs running in //.
- «Distant access » of the Objy and root files from the batch worker (BW):
\rightarrow random access to the files: only the objects needed by the client are transfered to the BW ($\sim \mathrm{kB}$ per request).
\rightarrow hundreds of connections per server.
\rightarrow thousands of requests per second.

Xrootd for the data access (I).

- Scalable.
- Very performant (trash NFS!).
- Fault tolerant (server failures don't prevent the service to continue).
- Lots of freedom in the site configuration:
- Choice of the hardware, OS.
- Choice of the MSS (or no MSS), protocol being used for the dialog MSS/Xrootd (ex: RFIO in Lyon).
- Choice of the architecture (ex: proxy services).

Xrootd for the data access (II).

- Already being used in Lyon by other experiments (ROOT framework):
- D0 (HEP).
- INDRA (Nuclear Physics).
- AMS (astroparticle).
- Can be used outside the ROOT framework (POSIX client interface):
Ex: could be used in Astrophysics for example (FITS files).
\rightarrow Xrootd: very good candidate for data access at the PetaByte scale.

BUT....

Data structure: the fear factor (I).

- A performant data access model depends also on this.
- Deep copies (full copy of subsets of the entire data sample) vs « pointers’ » files (only containing pointers to other files) ?

Deep copies	«Pointers» files
- duplicated data	- no data duplication
- ok in a «full disk» scenario	- ok in a «full disk» scenario
- ok if used with a MSS (if not	
too many deep copies!)	- potentially very stressful on the
MSS (VERY BAD)	

Data structure: the fear factor (II).

- In the BaBar Objectivity event store:
- Usage of pointer skims: very inefficient \rightarrow people build their own deep copies.
- For a single physics event:
- Data spread over several databases.
\rightarrow At least 5 files opened (staged) for one event!
- Deep copies are fine, unless there are too many of them!!! $\boldsymbol{\rightarrow}$ data management more difficult, cost increasing (MSS, disk).

The best data access model can be ruined by a bad data organization.

Dynamic staging.

- What is the right ratio ratio (disk cache / tape) ?
- Very hard to estimate, no general rules! It depends on:
- The data organization (« pointers » files? ...).
- The data access pattern (number of files « touched » per jobs, total number of files potentially being « touched» by all the jobs per day).
\rightarrow Estimate measuring (providing files are read more than once):
- lifetime of the files on the disk cache.
- time between 2 restaging of the same file.
- Right now for BaBar ratio $=44 \%$ (for the ROOT format) \rightarrow OK, could be less ($\sim 30 \%$ at the time of Objectivity).
- Extreme cases: Eros (Astrophysics) ratio $=2.5 \%$ is OK (studying one area of the sky at a time).

Data management.

Data import to Lyon.

- Data available within 24/48 hours:
- Hardware: performant network, servers configuration should scale.
- Software: performant and robust data management tools.
- Since January 2004, using SRB (Storage Resource Broker):
- Grid middleware developed by SDSC (San Diego, CA).
- Virtualized interface to heterogeneous storage devices (disk, tape systems, databases).
- Portable on many platforms (Linux, Solaris, AIX, Mac OS X, Windows).
- Handling users, access rights, replica, meta data and many, many more.
- API available in various languages (C, Java, Perl, Python), Web interfaces.
- Used in production in many areas: HEP, biology, Earth science, astrophysics.
- Save a lot of time in developing performant and automatic applications for data shipment.

SRB and BaBar.

- Massive transfers (170,000 files, 95 TB).
- Peak rate: $\mathbf{3}$ TB / day tape to tape (with 2 servers on both side).

Example of network utilization on ESNET (US): 1 server.

Data import: conclusion.

- SRB:
- Very powerful tool for data management.
- Robust and performant.
- Large community of users in many fields.
- Pitfalls:
- Huge amount of files to handle.
- If a some of them missing:
\rightarrow Should be easy to track down the missing files:
Logical File Name $\leftarrow \rightarrow$ Physical File Name (was not the case within Objectivity framework).
\rightarrow Good data structure important.

Simulation production.

BaBar simulation production.

- For the last production: SP6.
- More than 20 production sites.
- Data produced at each sites shipped to SLAC and redistributed to the Tier 1.
- CC-IN2P3: 11\% of the prod.
- 2nd largest producer.
- but $\mathbf{~ 8 0 \%}$ of the prod in non Tier 1 sites.
- activity completly distributed.
- Important role of the non Tier 1 sites.

Conclusion.

1. Data access / structure model: the most important part of the story.
2. Xrootd: very good answer for performant, scalable and robust data access.
3. Interface SRM / Xrootd: valuable for LCG.
4. Ratio (disk space / tape): very hard to estimate. Needs at least experience with a test-bed (after having answered to 1.).
5. Data management: SRB great!
6. Lessons learned from past errors: computing model «lighter».
