

Procurement Procedures at FNAL

lan Fisk LHCC-LCG Review November 14-15, 2005

Motivation of Procurement Strategy

The goals of the procurement process optimize a number of, sometimes orthogonal, constraints

- ➡ Enable the stakeholder to receive, commission and deploy enough resources in time to meet their goals
- Make the most efficient use of the financial resources available
 - Resources needs are large and budgets are limited
- Protect against procuring equipment that either does not satisfy the requirements, cannot be operated with the existing effort constraints, or is otherwise unreliable
 - It is necessary to discover bad equipment before hundreds of them are at the site
- Procure equipment that can be deployed given the realities of facility infrastructure and the requirements of other stake-holders
 - Power and cooling have become a limiting resource. Most sites support several activities.

Procurement Process (1/3)

At Fermilab the procurement process runs through several steps

- The first is to select qualified vendors for equipment
 - Periodically vendors are invited to send a reference system that is chosen to resemble the current stakeholder requests to FNAL
 - These systems are evaluated on how well they meet the specs, quality of assembly, temperature issues, etc
 - The last time this was performed approximately 25 vendors participated, not all passed. Eliminates vendors who cannot support
- The vendors that are selected from the qualification processes are invited to submit a price performance bid.
 - There are 5-6 vendors left to compete on FNAL contracts
 - FNAL is in the process of refining the procurement process and there are discussions of decoupling qualification and price performance
 - The goal is to keep the number of vendors responding to procurement requests small enough to perform detailed evaluations without infinite people
 - While keeping the responding number large enough to get competitive bids

Procurement Process (2/3)

At the time of a procurement, a stake-holder will put in a request to the lab. Systems can be received in a whole order or in quanta of racks

- Vendors are given two weeks to respond with a bid for the full request and a single evaluation unit
- The evaluation units are tested by a team led by the stake-holder for a period of one week
 - The system is compared to the bid requirements and the enclosure to facility constraints
 - A benchmarking suite to determine performance
 - Use the standard batch environment to replicate running conditions
 - The power under load conditions is measured
 - The stakeholder returns the list of technically acceptable bids to the procurement office
 - Only the units with a chance of winning are carefully evaluated
- The chosen vendor is given 4 weeks to deliver the systems to Fermilab

Procurement Process (3/3)

After assembly on the FNAL site the systems enter two weeks of burn-in

- ➡ The burn-in procedure is defined in the bid request. This currently consists of
 - SETI at home for the CPU, Bonnie++, and a memory test application
 - These typically discover significant system failures.
 - Separating benchmarking and burn-in: benchmarks are performed using stakeholder applications while burn-in is done using common applications
 - For an order to be accepted the uptime on the cluster must exceed
 98% uptime for the two week burn-in

After burn-in the systems are available for production use. The vendor invoices are paid.

Recent US-CMS Experience

US-CMS has moderately large procurements to make in preparation for the start of the experiment.

- In order to avoid the liability associated with procuring all the nodes simultaneously, which requires a lot of effort to commission and risks having an entire year's procurement be unacceptable, CMS experimented with taking possession in stages.
 - The vendor is notified of the US-CMS desire for equipment purchases for the year
 - The procurements are set up as options
 - US-CMS is committed to buying a single rack. When the rack has completed the burn-in process the option to procure additional racks can be exercised
 - In the 2005 procurement a buy of 280 nodes was performed in 3 options (1 racks and 2 orders of 3 racks)
 - The process is extended, but the liability is limited
 - The effort is spread over longer, but we can focus on incoming systems
 - Surprisingly the vendors seemed to like the process. Receiving also
 - System works because the vendor trusts that we will buy the units

Timeline

At the moment the time from order to gear on the floor is 10-11 weeks assuming no problems

- ► I-2 weeks to prepare bids
- 2 weeks to receive responses and evaluation nodes
- I week to evaluate nodes
- → 4 weeks to receive systems
 - Hardware addresses and local IPs are received in advance
- 2 weeks of burn-in

FNAL has been working to reduce the time lag

- Initial burn-in period was 30 days, which was determined to be unnecessarily long
- Hard to squeeze current periods and maintain the existing structure

The universities at the Tier-2 centers are generally operating on shorter time scales, but generally do so by eliminating steps that increase the risk of a bad order.

CPU Ramp to 2008

The operational ramp to the start of the experiment is manageable for processing resources

Experience at FNAL configuring and running farms this size already for Run2

The increase in number of nodes is almost linear

- Performance increase is a fairly conservative improvement estimate
- Dual cores CPUs may improve the situation
- Ramp of power and cooling are a significant issue

Disk Ramp to 2008

While FNAL has several hundred TB under management for the Run2 experiments, CMS dCache space at FNAL is ~100TB in 2005

Very steep operations ramp in disk storage before the experiment start

- Approximately a factor of 20
- Expecting to gain from improvements in capacity, benefit from later acquisitions. Weighed against need for operations experience.
- ➡ We are scaling dCache well past our current operational experience.

