
Databases developments in Databases developments in
the LCG Persistency the LCG Persistency

FrameworkFramework

GiacomoGiacomo GoviGovi
CERN IT/PSSCERN IT/PSS

On behalf of POOL projectOn behalf of POOL project

LHC Computing Comprehensive ReviewLHC Computing Comprehensive Review 22

Project scope

• Mandate: data persistency of LHC physics application
• Two main technology domains

– FILES - based on ROOT I/O
• Targeted for complex data structure: event data, analysis data
• Main focus of the project developments during the first two years
• Migration to Reflex LCG dictionary completed
• No big changes planned. Support & maintenance

– Relational Databases – Oracle, MySQL, SQLite
• Suitable for conditions, calibration, alignment, detector description

data - possibly produced by online systems
• Complex use cases and requirements, multiple ‘environments’ –

difficult to be satisfied by a single, solution
• Completed first phase of developments
• Focus moved to deployment and experiment support

LHC Computing Comprehensive ReviewLHC Computing Comprehensive Review 33

Project deliverablesProject deliverables

• POOL
– framework for the persistency of arbitrary C++ objects,

with File-based (Root) or RDBMS back-ends
– Users: ATLAS, CMS, LHCb

• CORAL
– general, technology independent interface to Relational

Database
– Users: COOL, POOL, ATLAS

• COOL
– framework for the handling of condition data

associated to a time validity
– Users: ATLAS, LHCb

LHC Computing Comprehensive ReviewLHC Computing Comprehensive Review 44

Project organizationProject organization

• Work packages
– Object storage and references
– Collections and Metadata
– Database access and distribution
– Catalog and Grid integration
– Conditions Database

• Current resources involved: 7.1 FTEs
– From experiments: 3.4 FTEs

LHC Computing Comprehensive ReviewLHC Computing Comprehensive Review 55

Project FrameworkProject Framework

Oracle

SQLite

MySQL

ROOT I/O

RDBMS

STORAGE MGR
COLLECTIONS

FILE CATALOG

P
O

O
L

A
P

I

U
S

E
R

 C
O

D
E

C
O

O
L

 A
P

I

COOL
CORAL

LHC Computing Comprehensive ReviewLHC Computing Comprehensive Review 66

CORALCORAL

COmmon Relational Abstraction Layer
A C++, SQLA C++, SQL--free, technologyfree, technology--independent API for RDBMS independent API for RDBMS

accessingaccessing
– Schema definition and manipulation
– Data manipulation
– Queries
– ORACLE, MySQL and SQLite plug-ins available

• Insulates in a common layer all the code accessing the DB
– Allows efficiently code (and knowledge…) re-use

• Usage extended beyond the scope of POOL
– COOL: self contained package independently released
– ATLAS: direct access of relational data

• API was reviewed and validated by early adopters
• New features addressing deployment and distribution of

relational data

LHC Computing Comprehensive ReviewLHC Computing Comprehensive Review 77

Highlights of the CORAL API

• Bulk operations
– Round-trips to the server are minimized in

insert/update/delete operations

• Internal use of bind variables
– SQL parsing on the server is avoided

• Client-side caching of query results (row pre-fetching)
– Round-trips to the server are minimized when fetching the

result set of a query

• Support for BLOB I/O.
• Optimizations and “best practices” implemented in

the RDBMS plug-ins
– Users may concentrate on the functionality of their own use

cases

LHC Computing Comprehensive ReviewLHC Computing Comprehensive Review 88

Addressing deployment (I)

Database connection
• Uniform connection protocol for different RDBMS

flavours
– An internal service selects transparently the plug-in to use

• Logical database service name: a lookup service
provides the corresponding contact string
– Service indirection to access distributed replicas
– Provides connection failover across RDBMS technologies

• Client-side connection pooling
– Client can access data through a connection proxy

• Authentication
– Explicit/Implicit, via a dedicate service
– Exploring authentication based on Grid certificates

LHC Computing Comprehensive ReviewLHC Computing Comprehensive Review 99

Addressing deployment (II)

Client-side monitoring
• General interface for monitoring service to register

information about interesting events:
– Time and duration of sessions
– Transactions
– Response time

– …

• Collected data can be pushed into existing
monitoring system by implementing the interface

– E.g. MonALISA

• A default implementation is provided as a simple
data place holder

LHC Computing Comprehensive ReviewLHC Computing Comprehensive Review 1010

POOL Object Relational Access (ORA)POOL Object Relational Access (ORA)

Implementation of the existing POOL Storage
Manager interface for C++ objects persistency

• Users access data with the same interface used for
the ROOT backend
• Write and Read complex data structures into/from
relational DBs

– Wide acceptance of C++ constructs (seal Reflex)
– Selecting the DB technology according to the requirements

• Retrieve existing relational data as C++ objects in the
offline reconstruction/analysis framework

– Import in the off-line chain condition data taken on-line

•• First integration tests from CMS successful!First integration tests from CMS successful!

LHC Computing Comprehensive ReviewLHC Computing Comprehensive Review 1111

CORAL

ObjectRelationalAccess

RelationalStorageSvc

POOL::StorageService

OracleAccess SQLiteAccess MySQLAccess ODBCAccess

Object Relational Access (ORA)Object Relational Access (ORA)

REFLEX

LHC Computing Comprehensive ReviewLHC Computing Comprehensive Review 1212

ORA: Object mappingORA: Object mapping

•• How to map C++ classes ↔ RDBMS tables?
– C++ and SQL describe data layout with very different constraints/aims

•Mapping definition :
–Objects need an unique identifier (persistent address)
–Reflex dictionary necessary to decompose the class hierarchy in simple
elements (primitives/strings)
–Tables and column associated to the fields with simple ‘default’ rules
–Everything is stored in 3 relational tables
–A tool is provided for the user-defined mapping:
–Mapping gets “materialized” and stored in the database

•Object arrays supported
– Currently stored with the elements in individual records
– BLOB-based storage coming soon

LHC Computing Comprehensive ReviewLHC Computing Comprehensive Review 1313

ORA: Reading preORA: Reading pre--existing dataexisting data

ORA can read relational data as C++ objects, even if
tables and rows are generated by other means

• Prerequisites:
– Classes describing the object layout are defined with a

proper mapping
– Rows storing objects data are uniquely identified by primary

keys

• Command-line tool available
– Set up the POOL database according to the directives

specified by the user (technology, containers, mapping)
– ‘Soft’ import: configure and update POOL internals to

populate pool containers
– Original data is unchanged!

LHC Computing Comprehensive ReviewLHC Computing Comprehensive Review 1414

Conditions Database Project (COOL)Conditions Database Project (COOL)

Common software for the management of experiment
conditions data

• Conditions data: non-event data that vary with time and may
also exist in different versions
– Online producers: slow control (single version)
– Offline producers: calibration, alignment (multiple versions)

• Minimize duplication of efforts, maximize reuse of LCG software
– Single implementation (and same relational schema) for multiple

back-ends using CORAL – same user code for all backends
– Free access to CORAL connection pooling, monitoring and retrial

• Modeling of conditions “objects” (e.g. a calibration set)
– System-managed common metadata
– User-defined data payload

LHC Computing Comprehensive ReviewLHC Computing Comprehensive Review 1515

COOL StatusCOOL Status

• Basic functionalities implemented in several production releases

• Current priorities concern deployment issues for Atlas and LHCb
– Performance validation and optimization
– Deployment has started for Atlas (production accounts on RAC)

• Performance validation and optimization
– Definition of realistic experiment workloads
– Proper sizing of database server
– Software optimization (identify and solve performance bottlenecks)

• Data extraction and replication tools and tests
– Basic tools for data extraction and replication exist
– Replication and access tests in the context of the 3D project
– Start the design of a more distributed data model and API for a

COOL “database”

LHC Computing Comprehensive ReviewLHC Computing Comprehensive Review 1616

SummarySummary

The LCG Persistency framework provides transparent
access to RDBMS based persistency

• Experiments needs and requirements fulfilled:
– CORAL API for general data manipulation
– COOL Framework specific for time-varying condition data
– Object Relational Storage manager for storage and retrieve of data

as C++ objects

• Strong focus on features addressing deployment
issues
– Access to multi-technology services
– Authentication and connection handling
– Client-side monitoring
– Use and promote best practices in the DB client code

• Attention to experiments concrete use cases
– Ad hoc tools implemented to meet specific requirements
– Optimization and performance tuning

