# Diffractive DIS analysis and implications 

Graeme Watt

## DESY

In collaboration with A. D. Martin and M. G. Ryskin
[Eur. Phys. J. C 37 (2004) 285; Phys. Rev. D 70 (2004) 091502; hep-ph/0412212]

## Goals of MRW analysis

1. Diffractive DIS data: Formulate new perturbative QCD description and extract reliable diffractive PDFs
2. Inclusive DIS data: Study effect of absorptive corrections due to parton recombination on conventional proton PDFs

Link between 1. and 2. is provided by AGK cutting rules

- Outline of talk:
- Review work presented at June meeting
- New plots made to clarify some aspects
- Recent developments and outlook on future work


## Diffractive DIS kinematics



- $q^{2} \equiv-Q^{2}$
- $W^{2} \equiv(q+p)^{2}=-Q^{2}+2 p \cdot q$
$\Rightarrow \quad x_{B} \equiv \frac{Q^{2}}{2 p \cdot q}=\frac{Q^{2}}{Q^{2}+W^{2}}$
(fraction of proton's momentum carried by struck quark)
- $t \equiv\left(p-p^{\prime}\right)^{2} \approx 0,\left(p-p^{\prime}\right) \approx x_{I P} p$
- $M_{X}^{2} \equiv\left(q+p-p^{\prime}\right)^{2}=-Q^{2}+x_{I P}\left(Q^{2}+W^{2}\right)$
$\Rightarrow \quad x_{I P}=\frac{Q^{2}+M_{X}^{2}}{Q^{2}+W^{2}}$
(fraction of proton's momentum carried by Pomeron)
- $\beta \equiv \frac{x_{B}}{x_{P}}=\frac{Q^{2}}{Q^{2}+M_{X}^{2}}$ (fraction of Pomeron's momentum carried by struck quark)


## Diffractive structure function $F_{2}^{D(3)}$

- Diffractive cross section (integrated over $t$ ):

$$
\frac{\mathrm{d}^{3} \sigma^{D}}{\mathrm{~d} x_{I P} \mathrm{~d} \beta \mathrm{~d} Q^{2}}=\frac{2 \pi \alpha_{\mathrm{em}}^{2}}{\beta Q^{4}}\left[1+(1-y)^{2}\right] \sigma_{r}^{D(3)}\left(x_{I P}, \beta, Q^{2}\right),
$$

where $y=Q^{2} /\left(x_{B} s\right), s=4 E_{e} E_{p}$, and

$$
\sigma_{r}^{D(3)}=F_{2}^{D(3)}-\frac{y^{2}}{1+(1-y)^{2}} F_{L}^{D(3)} \approx F_{2}^{D(3)}\left(x_{I P}, \beta, Q^{2}\right),
$$

for small $y$ or assuming that $F_{L}^{D(3)} \ll F_{2}^{D(3)}$

- Measurements of $F_{2}^{D(3)} \Rightarrow$ diffractive parton distribution functions (DPDFs)

$$
a^{D}\left(x_{\mathbb{P}}, \beta, Q^{2}\right)=\beta \Sigma^{D}\left(x_{\mathbb{I}}, \beta, Q^{2}\right) \text { or } \beta g^{D}\left(x_{\mathbb{I}}, \beta, Q^{2}\right)
$$

## 'Traditional' extraction of DPDFs

- Assume Regge factorisation [Ingelman-Schlein,1985]:

$$
F_{2}^{D(3)}\left(x_{I P}, \beta, Q^{2}\right)=f_{I P}\left(x_{I P}\right) F_{2}^{I P}\left(\beta, Q^{2}\right)
$$

- Pomeron flux factor from Regge phenomenology:

$$
f_{I P}\left(x_{I P}\right)=\int_{t_{\mathrm{cut}}}^{t_{\mathrm{min}}} \mathrm{~d} t \frac{\mathrm{e}^{B_{I P} t}}{x_{I P}^{2 \alpha_{I P}(t)-1}}
$$

$$
\left(\alpha_{I P}(t)=\alpha_{I P}(0)+\alpha_{I P}^{\prime} t\right)
$$

Fits to $F_{2}^{D(3)}$ data give $\alpha_{I P}(0)>1.08$ (value from soft hadron data) $\Longrightarrow$ significant perturbative QCD contributions to diffractive DIS

- Evaluate Pomeron structure function $F_{2}^{I P}\left(\beta, Q^{2}\right)$ from quark singlet $\Sigma^{I P}\left(\beta, Q^{2}\right)$ and gluon $g^{I P}\left(\beta, Q^{2}\right)$ Pomeron PDFs DGLAP-evolved from arbitrary polynomial input at scale $Q_{0}^{2}$


## New perturbative QCD approach

- Pomeron singularity not a pole but a cut [Lipatov, 1986]
$\Rightarrow$ continuous number of components of size $1 / \mu$ :

$$
F_{2, \mathrm{P}}^{D(3)}\left(x_{I P}, \beta, Q^{2}\right)=\int_{Q_{0}^{2}}^{Q^{2}} \mathrm{~d} \mu^{2} f_{I P}\left(x_{I P} ; \mu^{2}\right) F_{2}^{I P}\left(\beta, Q^{2} ; \mu^{2}\right)
$$

- Perturbative Pomeron represented by two $t$-channel gluons in colour singlet:

$$
f_{I P=G}\left(x_{I P} ; \mu^{2}\right)=\frac{1}{x_{I P}}\left[\frac{\alpha_{S}\left(\mu^{2}\right)}{\mu^{2}} x_{I P} g\left(x_{I P}, \mu^{2}\right)\right]^{2}
$$

where $g\left(x_{I P}, \mu^{2}\right)$ is the (integrated) gluon distribution of the proton

## Problem: $x_{I P} g\left(x_{I P}, \mu^{2}\right)$ at low $\mu^{2}$

- But...
- $f_{I P=G}\left(x_{I P} ; \mu^{2}\right) \propto\left[x_{I P} g\left(x_{I P}, \mu^{2}\right) / \mu^{2}\right]^{2}$ $\Rightarrow$ dominant contribution from low scales $\mu \sim Q_{0} \sim 1 \mathrm{GeV}$
- $F_{2}^{D(3)}$ data need $x_{I P} g\left(x_{I P}, \mu^{2}\right) \sim x_{I P}^{-\lambda}$ with $\lambda \simeq 0.17$

MRST2001 NLO proton PDFs


## Solution:

- Introduce Pomeron composed of two sea quarks in a colour singlet:

$$
f_{I P=S}\left(x_{I P} ; \mu^{2}\right)=\frac{1}{x_{I P}}\left[\frac{\alpha_{S}\left(\mu^{2}\right)}{\mu^{2}} x_{I P} S\left(x_{I P}, \mu^{2}\right)\right]^{2}
$$

and interference term with two-gluon Pomeron $(I P=G S)$
(set $x_{I P} g\left(x_{I P}, \mu^{2}\right)=0$ if - ve)

## New perturbative QCD approach



- $F_{2}^{I P}\left(\beta, Q^{2} ; \mu^{2}\right)$ calculated from quark singlet $\Sigma^{I P}\left(\beta, Q^{2} ; \mu^{2}\right)$ and gluon $g^{I P}\left(\beta, Q^{2} ; \mu^{2}\right)$ DGLAP-evolved from an input scale $\mu^{2}$ up to $Q^{2}$
- Get input Pomeron PDFs $\Sigma^{I P}\left(\beta, \mu^{2} ; \mu^{2}\right)$ and $g^{I P}\left(\beta, \mu^{2} ; \mu^{2}\right)$ from lowest-order Feynman diagrams. Calculate using light-cone wave functions of the photon [Wüsthoff,1997]


## Example of dipole calculations

Two-gluon Pomeron, transversely-polarised photon, $\gamma^{*} \rightarrow q \bar{q}$ :

$$
\left.\frac{\mathrm{d} \sigma_{q \bar{q}, T}^{\gamma^{*} p}}{\mathrm{~d} t}\right|_{t=0}=\frac{N_{C}}{16 \pi} \int_{0}^{1} \mathrm{~d} \alpha \int \frac{\mathrm{~d} k_{t}^{2}}{2 \pi} \sum_{f} e_{f}^{2} \alpha_{\mathrm{em}} \frac{1}{2} \sum_{\gamma= \pm 1} \sum_{h= \pm 1}\left|\int \frac{\mathrm{~d}^{2} \boldsymbol{l}_{t}}{\pi} D \Psi_{h}^{\gamma} \frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} l_{t}^{2}}\right|^{2}
$$

- Obtain four different permutations by simply shifting argument of wave functions:


## Example of dipole calculations

- Obtain dipole cross section $\frac{\mathrm{d} \hat{\sigma}}{\mathrm{d} l_{t}^{2}}(q p \rightarrow q p)$ from $\frac{\mathrm{d} \hat{\sigma}}{\mathrm{d} l_{t}^{2}}(q q \rightarrow q q)$ :
- Make replacement


$$
\left.\frac{\alpha_{S}\left(l_{t}^{2}\right)}{2 \pi} x_{I P} P_{g q}\left(x_{I P}\right)\right|_{x_{I P} \ll 1} \rightarrow f_{g}\left(x_{I P}, l_{t}^{2}, \mu^{2}\right)
$$

$$
\text { where } \mu^{2} \equiv k_{t}^{2} /(1-\beta) \text { and } f_{g}\left(x_{I P}, l_{t}^{2}, \mu^{2}\right)
$$

is the unintegrated gluon distribution

- Work in strongly-ordered limit $\left(l_{t} \ll k_{t} \ll Q\right)$ :

$$
\int \frac{\mathrm{d}^{2} \boldsymbol{l}_{\boldsymbol{t}}}{\pi} D \Psi_{h}^{\gamma} \frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} l_{t}^{2}} \sim \int_{0}^{\mu^{2}} \mathrm{~d} l_{t}^{2} l_{t}^{2} \frac{1}{l_{t}^{4}} f_{g}\left(x_{I P}, l_{t}^{2}, \mu^{2}\right)=x_{I P} g\left(x_{I P}, \mu^{2}\right)
$$

$D \Psi_{h}^{\gamma}$ gives the $\beta$ dependence of $\Sigma^{I P=G}\left(\beta, \mu^{2} ; \mu^{2}\right)$

## Two-gluon Pomeron

- Work in strongly-ordered limit: $l_{t} \ll k_{t} \ll Q$

Quark dipole


$$
\beta \Sigma^{I P=G}\left(\beta, \mu^{2} ; \mu^{2}\right)=c_{q / G} \beta^{3}(1-\beta)
$$

$$
F_{L}^{I P=G}(\beta)=c_{L / G} \beta^{3}(2 \beta-1)^{2}
$$

Effective gluon dipole


$$
\beta^{\prime} g^{I P=G}\left(\beta^{\prime}, \mu^{2} ; \mu^{2}\right)=c_{g / G}\left(1+2 \beta^{\prime}\right)^{2}\left(1-\beta^{\prime}\right)^{2}
$$

## Two-quark Pomeron

- Work in strongly-ordered limit: $l_{t} \ll k_{t} \ll Q$

Quark dipole


$$
\beta \Sigma^{I P=S}\left(\beta, \mu^{2} ; \mu^{2}\right)=c_{q / S} \beta(1-\beta)
$$

$$
F_{L}^{I P=S}(\beta)=c_{L / S} \beta^{3}
$$

$$
\beta^{\prime} g^{I P=S}\left(\beta^{\prime}, \mu^{2} ; \mu^{2}\right)=c_{g / S}\left(1-\beta^{\prime}\right)^{2}
$$

## Other contributions to $F_{2}^{D(3)}$

$$
F_{2}^{D(3)}=F_{2, \mathrm{P}}^{D(3)}+F_{2, \mathrm{NP}}^{D(3)}+F_{L, \mathrm{P}}^{D(3)}+F_{2, / R}^{D(3)}
$$

- Non-perturbative contribution $\left(\mu<Q_{0}, \alpha_{I P}(0)=1.08\right)$ :

$$
\begin{gathered}
F_{2, \mathrm{NP}}^{D(3)}=f_{I P=\mathrm{NP}}\left(x_{I P}\right) F_{2}^{I P=\mathrm{NP}}\left(\beta, Q^{2} ; Q_{0}^{2}\right) \\
{\left[\beta \Sigma^{I P=\mathrm{NP}}\left(\beta, Q_{0}^{2} ; Q_{0}^{2}\right)=c_{q / \mathrm{NP}} \beta(1-\beta), \quad \beta^{\prime} g^{I P=\mathrm{NP}}\left(\beta^{\prime}, Q_{0}^{2} ; Q_{0}^{2}\right)=0\right]}
\end{gathered}
$$

- Twist-four contribution:

$$
F_{L, P}^{D(3)}=\sum_{I P=G, S, G S}\left(\int_{Q_{0}^{2}}^{Q^{2}} \mathrm{~d} \mu^{2} \frac{\mu^{2}}{Q^{2}} f_{I P}\left(x_{I P} ; \mu^{2}\right)\right) F_{L}^{I P}(\beta)
$$

- Secondary Reggeon contribution $\left(\alpha_{\mathbb{R}}(0)=0.50\right)$ :

$$
F_{2, \mathbb{}}^{D(3)}=c_{\mathbb{R}} f_{\mathbb{R}}\left(x_{I P}\right) F_{2}^{\pi}\left(\beta, Q_{\text {HEALHO }}^{2}\right)
$$

## Description of $F_{2}^{D(3)}$ data

- Fit three different data sets simultaneously, allowing for different relative normalisations due to proton dissociation:

| Data set | Points $-a$ | Proton dissociation | Normalisation |
| :---: | :---: | :---: | :---: |
| 1997 ZEUS LPS | 69 | none | 1 |
| 1998/99 ZEUS (prel.) | 121 | $M_{Y}<2.3 \mathrm{GeV}$ | $\approx 1.5$ |
| 1997 H1 (prel.) | 214 | $M_{Y}<1.6 \mathrm{GeV}$ | $\approx 1.2$ |

- Only other free parameters are normalisations (effective $K$-factors typically $\sim 1-4$ ) of the input Pomeron PDFs, the twist-four contributions and the secondary Reggeon contrib.:

$$
c_{q / G}, c_{g / G}, c_{L / G}, c_{q / S}, c_{g / S}, c_{L / S}, c_{q / \mathrm{NP}}, c_{I R} \quad\left(Q_{0}=1 \mathrm{GeV}\right)
$$

$$
\left(\operatorname{Fix} c_{i / G S}=\sqrt{c_{i / G} c_{i / S}} \text { for } i=q, g, L\right)
$$

[^0]
## Fit to ZEUS $+\mathbf{H 1} F_{2}^{D(3)}$



## Fit to ZEUS $+\mathbf{H 1} F_{2}^{D(3)}$



## DPDFs compared to H 1 fit



- H1 2002 NLO QCD fit has no twist-four contribution


## Why is MRW $g^{D}$ smaller than H1?

$$
\begin{gathered}
F_{2, \mathrm{P}}^{D(3)}\left(x_{I P}, \beta, Q^{2}\right)=\sum_{I P=G, S, G S} \int_{Q_{0}^{2}}^{Q^{2}} \mathrm{~d} \mu^{2} f_{I P}\left(x_{I P} ; \mu^{2}\right) F_{2}^{I P}\left(\beta, Q^{2} ; \mu^{2}\right) \\
\frac{\partial F_{2, \mathrm{P}}^{D(3)}}{\partial \ln Q^{2}}=\sum_{I P}\left[\int_{Q_{0}^{2}}^{Q^{2}} \mathrm{~d} \mu^{2} f_{I P}\left(x_{I P} ; \mu^{2}\right) \frac{\partial F_{2}^{I P}\left(\beta, Q^{2} ; \mu^{2}\right)}{\partial \ln Q^{2}}+Q^{2} f_{I P}\left(x_{I P} ; Q^{2}\right) F_{2}^{I P}\left(\beta, Q^{2} ; Q^{2}\right)\right]
\end{gathered}
$$

- Second term $\sim 1 / Q^{2}$ but numerically significant
$\therefore$ smaller $g^{D}$ needed to reproduce $Q^{2}$ slope of DDIS data
- We use $\alpha_{S}\left(M_{Z}^{2}\right)=0.1190$, cf. $0.1085(\mathrm{H} 1), 0.1187$ (PDG). Larger $\alpha_{S} \Rightarrow$ smaller $g^{D}$


## Absorptive corrections to $F_{2}$



- AGK cutting rules ${ }^{a} \Longrightarrow$ diffractive events are intimately related to absorptive corrections to the inclusive structure function $F_{2}$ :



## Absorptive corrections to $F_{2}$

$$
F_{2}^{\text {data }}\left(x_{B}, Q^{2}\right)=F_{2}^{\text {DGLAP }}\left(x_{B}, Q^{2}\right)+\Delta F_{2}^{\text {abs }}\left(x_{B}, Q^{2}\right)
$$

$$
\Delta F_{2}^{\text {abs }}\left(x_{B}, Q^{2}\right)=-\int_{Q_{0}^{2}}^{Q^{2}} \mathrm{~d} \mu^{2} F_{2}^{D}\left(x_{B}, Q^{2} ; \mu^{2}\right)
$$

- $F_{2}^{D}\left(x_{B}, Q^{2} ; \mu^{2}\right)$ is the contribution to $F_{2}^{D(3)}$ (integrated over $x_{I P}$ ) originating from a perturbative component of the Pomeron of size $1 / \mu$. The $\mu<Q_{0}$ contributions to the absorptive corrections are already included in the input parameterisations to the $F_{2}$ fit
- To fit $F_{2}$ using the DGLAP equation, first need to 'correct' the data for absorptive effects: a

$$
F_{2}^{\mathrm{DGLAP}}=F_{2}^{\text {data }}-\Delta F_{2}^{\mathrm{abs}}=F_{2}^{\text {data }}+\left|\Delta F_{2}^{\mathrm{abs}}\right|
$$

${ }^{\text {Aside: }}$ absorptive corrections $\sim$ non-linear effects, screening, shadowing, unitarity corrections, multiple scattering, multiple interactions, recombination, saturation effects, ...

## Compare to GLRMQ approach

- Gribov-Levin-Ryskin-Mueller-Qiu: original way of studying absorptive corrections to DGLAP (see e.g. talk by V. Kolhinen, October meeting). Non-linear DGLAP equation:

$$
\frac{\partial x g\left(x, Q^{2}\right)}{\partial \ln Q^{2}}=\left.\frac{\partial x g\left(x, Q^{2}\right)}{\partial \ln Q^{2}}\right|_{\text {DGLAP }}-\frac{9}{2} \frac{\alpha_{S}^{2}\left(Q^{2}\right)}{R^{2} Q^{2}} \int_{x}^{1} \frac{\mathrm{~d} x^{\prime}}{x^{\prime}}\left[x^{\prime} g\left(x^{\prime}, Q^{2}\right)\right]^{2}
$$

- Disadvantages: only DLLA, violation of momentum conservation, uncertainty in two-gluon distribution and in $R$ parameter
- MRW approach: 'correct' $F_{2}$ data for non-linear effects then fit using linear DGLAP evolution
- Advantages: goes beyond DLLA, include sea quark recombination in addition to gluon recombination, allows use of standard NLO DGLAP evolution codes, parameters are fitted to DDIS data


## Simultaneous $F_{2}+F_{2}^{D(3)}$ analysis

- Procedure:

1. Start by fitting ZEUS $+\mathrm{H} 1 F_{2}$ data ( 279 points) ${ }^{\text {a }}$ with no absorptive corrections ~MRST2001 NLO
2. Fit ZEUS $+\mathrm{H} 1 F_{2}^{D(3)}$ data, using $g\left(x_{I P}, \mu^{2}\right)$ and $S\left(x_{I P}, \mu^{2}\right)$ from previous $F_{2}$ fit
3. Fit $F_{2}^{\text {DGLAP }}=F_{2}^{\text {data }}+\left|\Delta F_{2}^{\text {abs }}\right|$, with $\Delta F_{2}^{\text {abs }}$ from previous $F_{2}^{D(3)}$ fit
4. Go to 2.

- Only a few iterations needed for convergence

[^1]
## Fit to ZEUS + H1 $F_{2}$ data

$x_{B}=0.00005$ to 0.00032


## Gluon and sea quark PDFs



- Take +ve input gluon parameterisation $\left(A_{-}=0\right)$ :
- no absorptive corrections $\chi^{2} /$ d.o.f. $=1.57$ for $F_{2}, 1.17$ for $F_{2}^{D(3)}$
- with absorptive corrections $\chi^{2} /$ d.o.f. $=1.11$ for $F_{2}, 1.14$ for $F_{2}^{D(3)}$


## Percentage increase in gluon distribution



## ‘Pomeron-like’ $x S$ but 'valence-like' $x g$ ?

- Good news: Absorptive corrections remove the need for a negative input gluon distribution when fitting inclusive $F_{2}$ data
- Bad news: Still have 'Pomeron-like’ sea quarks but 'valence-like’ gluons at small $x$ and low $Q^{2}$ :

$$
x g \sim x^{-\lambda_{g}}, x S \sim x^{-\lambda_{S}} \quad \text { with } \quad \lambda_{g}<0 \text { and } \lambda_{S}>0
$$

- Reminder:
- Regge theory $\Longrightarrow \lambda_{g}=\lambda_{S}$
- Resummed NLL BFKL $\Longrightarrow \lambda_{g}=\lambda_{S} \simeq 0.3$
- Soft hadron data $\Longrightarrow \lambda \simeq 0.08$
- Must be some large non-perturbative effect causing the observed behaviour. One possibility: mimic unknown power corrections by shifting scale in $F_{2}$ and $F_{2}^{D(3)}$ fits by $\approx 1 \mathrm{GeV}^{2}$. Fix $\lambda_{g}=\lambda_{S}=0$


## Multi- $I P$ exchange (approximately)

- $s$-channel unitarity relation in impact parameter $\left(\boldsymbol{b}_{\boldsymbol{t}}\right)$ basis:

$$
2 \operatorname{Im} T_{\mathrm{el}}\left(s, \boldsymbol{b}_{\boldsymbol{t}}\right)=\left|T_{\mathrm{el}}\left(s, \boldsymbol{b}_{\boldsymbol{t}}\right)\right|^{2}+G_{\mathrm{inel}}\left(s, \boldsymbol{b}_{\boldsymbol{t}}\right)
$$

- Assume $\operatorname{Re} T_{\text {el }} \ll \operatorname{Im} T_{\text {el }}$, then $T_{\text {el }}=\mathrm{i}[1-\exp (-\Omega / 2)]$ where $\Omega\left(s, b_{t}\right)$ is the opacity (optical density) or eikonal
- Let $F_{2}^{D} \equiv\left|\Delta F_{2}^{\mathrm{abs}}\right|\left(\mu>Q_{0}\right.$, two-IP exch.), then, for some $\left\langle\boldsymbol{b}_{\boldsymbol{t}}\right\rangle$ :

$$
\frac{F_{2}^{D}}{F_{2}^{\text {data }}}=\frac{\left|T_{\mathrm{el}}\left(s,\left\langle\boldsymbol{b}_{\boldsymbol{t}}\right\rangle\right)\right|^{2}}{2 \operatorname{Im} T_{\mathrm{el}}\left(s,\left\langle\boldsymbol{b}_{\boldsymbol{t}}\right\rangle\right)}=\frac{1}{2}(1-\exp (-\Omega / 2))
$$

- To fit $F_{2}$ with DGLAP equation, need one-IP exchange:

$$
F_{2}^{\mathrm{DGLAP}}=F_{2}^{\text {data }} \frac{\Omega / 2}{1-\exp (-\Omega / 2)}
$$

## Gluon and sea quark PDFs



- Good description of $F_{2}$ and $F_{2}^{D(3)}$ data with 'flat' asymptotic behaviour ( $x \rightarrow 0$ ) of input $x g, x S$


## Modifications to original MRW analysis

- Shift scale in $F_{2}$ and $F_{2}^{D(3)}$ fits: $Q^{2} \rightarrow Q^{2}+1 \mathrm{GeV}^{2}$ and $\mu^{2} \rightarrow \mu^{2}+1 \mathrm{GeV}^{2}$. Fix $\lambda_{g}=\lambda_{S}=0$ in $F_{2}$ fit
- Use eikonal formula to approximately include absorptive corrections from multi-Pomeron exchange in $F_{2}$ fit
- Take $\beta^{\prime} g^{\mathrm{IP}=\mathrm{NP}}\left(\beta^{\prime}, Q_{0}^{2} ; Q_{0}^{2}\right)=c_{g / \mathrm{NP}} \beta^{\prime}$ (previously zero)
- Parameterise input $g^{I P}$ in DIS scheme, then transform to $\overline{M S}$ scheme (cf. MRST2004 PDFs)
- Include ZEUS diffractive open charm data, $F_{2}^{D(3), c \bar{c}}$, at $x_{I P}=0.004$. In addition to $\gamma^{*} g^{I P} \rightarrow c \bar{c}$, include diagrams where the two gluons comprising the Pomeron couple directly to the two charm quarks [Levin-Martin-Ryskin-Teubner, 1997]


## Fit ZEUS LPS + charm DDIS data



- Very good fit to DDIS data ( $x_{I P}<0.01, c_{R R}=0$, stat. errors only): $\chi^{2}=19$ for $37 F_{2}^{D(3)}$ points, $\chi^{2}=4$ for $5 F_{2}^{D(3), c \bar{c}}$ points
- ... but large $\left|\Delta F_{2}^{\mathrm{abs}}\right| / F_{2}^{\text {data }}>0.5 \Rightarrow$ violates unitarity (very poor $\chi^{2} /$ d.o.f. $=2.00$ for $F_{2}$ fit)


## Fit ZEUS + H1 + charm DDIS data



- Good fit to ZEUS + H1 DDIS data $\left(\chi^{2}=484\right.$ for $408 F_{2}^{D(3)}$ points), reasonable fit to ZEUS charm data ( $\chi^{2}=19$ for $4 F_{2}^{D(3), c \bar{c}}$ points)
- Very good fit to $F_{2}$ ( $x^{2} /$ d.o.f. $=0.98$, unitarity not violated)
- Currently, this is our 'best' fit


## CDF diffractive dijets

- Diffractive structure function of the antiproton:

$$
\tilde{F}_{J J}^{D}(\beta)=\frac{1}{\xi_{\max }-\xi_{\min }} \int_{\xi_{\min }}^{\xi_{\max }} \mathrm{d} \xi\left[\beta g^{D}\left(\xi, \beta, Q^{2}\right)+\frac{4}{9} \beta \Sigma^{D}\left(\xi, \beta, Q^{2}\right)\right]
$$



- Fairly close to result presented by M. Arneodo (October meeting)
- Results for 'survival probability' of the rapidity gap do not contradict calculation by Kaidalov-Khoze-Martin-Ryskin, 2000/1:

$$
S^{2} \simeq 0.12-0.28
$$

## Future work: Diffractive PDFs

- After ZEUS + H1 DDIS data finally published, expect public release of MRW DPDFs
- Test by calculating final state observables in DDIS, e.g. dijet and D* meson production cross sections (as already done by H 1 )
- DPDFs needed for calculating background to exclusive diffractive Higgs production at LHC. Test formalism using exclusive dijet production in double Pomeron exchange measured by CDF at Tevatron


## Future work: Absorptive corrections

- Absorptive corrections are significant and should be incorporated into global parton analyses (MRST, CTEQ, ...)
- Test corrected PDFs using observables sensitive to small- $x$, e.g. production of forward Drell-Yan pairs
- Size of colour octet exchange contribution?
- Exclusive observables? Want Monte Carlo program with two parton chains compatible with AGK cutting rules (see talk by J. Bartels, October meeting), e.g. if both ladders cut, naïvely expect double the particle multiplicity compared to one cut ladder:


Important for understanding multiple interactions at the LHC

## Conclusions

- New perturbative QCD description of $F_{2}^{D(3)}$
- Pomeron singularity not a pole but a cut $\Rightarrow$ Integral over Pomeron scale $\mu$
- Input Pomeron PDFs from lowest-order QCD diagrams
- Two-quark Pomeron in addition to two-gluon Pomeron
- Absorptive corrections to $F_{2}$ from AGK cutting rules
- Good news: remove need for negative gluon input
- Dilemma: still have 'Pomeron-like’ sea quarks but 'valence-like' gluons at small $x$ and low $Q^{2}$

1. Non-perturbative Pomeron doesn't couple to gluons, secondary Reggeon couples more to gluons than sea quarks?
2. Unknown non-perturbative power corrections slow down DGLAP evolution at low $Q^{2}$ ?

[^0]:    ${ }^{a}$ Cuts: $M_{X}>2 \mathrm{GeV}, y<0.45$

[^1]:    ${ }^{a}$ Cuts: $x_{B}<0.01,2<Q^{2}<500 \mathrm{GeV}^{2}, W^{2}>12.5 \mathrm{GeV}^{2}$; match to MRST $x g, x S$ at $x=0.2$

