

Describing p_T Distributions of Charged Particles in the Underlying Event

Arthur M. Moraes

University of Glasgow

CERN, 18th January 2005

Outline:

- p_T distributions of particles in the UE
- Comparing UE tunings
- Parton showers in PYTHIA PARP(67)
- Azimuthal decorrelation in di-jet systems
- Conclusions

p_T distribution: particles from the underlying event

Phys. Rev. D, 65 092002 (2002)

A. M. Moraes

CERN, 18th January 2005

Describing the UE with MC event generators (review...)

JIMMY – "Tuning A" predictions

Comparing underlying event tunings

Good agreement between models and data for p_T liet > 5 GeV.

For p_T ljet > 30 GeV JIMMY and PYTHIA tunings with increased PARP(67) better describe the data.

Dijet azimuthal decorrelation

B

hep-ex/0409040 Sep. 2004

Run 178796 Event 67972991 Fri Feb 27 08:34:15 2004

Jets are defined in the central region using seedbased cone algorithm (R=0.7)

> leading jet p_T^{max} > 75 GeV second leading jet p_T^{max} > 40 GeV both leading p_T jets: |y_{jet}| < 0.5

Dijet production in hadron-hadron collisions result in $\Delta \phi_{\text{dijet}} = \phi_{\text{jet1}} - \phi_{\text{jet2}} = \pi$ in the absence of radiative effects.

 $\Delta \phi_{\text{dijet}} = \pi \rightarrow \text{exactly two jets, no further radiation}$

 $\Delta \phi_{dijet}$ small deviations from $\pi \to$ additional soft radiation outside the jets

 $\Delta \phi_{\text{dijet}}$ as small as $2\pi/3 \rightarrow$ one additional high-p_T jet

small $\Delta \phi_{\text{dijet}}$ – no limit \rightarrow multiple additional hard jets in the event

CERN, 18th January 2005

Dijet azimuthal decorrelation

PARP(67) defines the maximum parton virtuality allowed in ISR showers (PARP(67) x hard scale Q²)

PARP(67)=1 (default): distributions underestimate the data! Need to increase the decorrelation effect, i.e. increase radiative and multiple interaction effects.

Increasing PARP(67) (from 1 to 4) the azimuthal decorrelation is increased.

Best value is somewhere between PARP(67)= 1 and 4!

CERN, 18th January 2005

Conclusions:

- Monte Carlo tunings for the underlying event which agree for average properties of the underlying event, may not agree for more specific distributions (also seen for minimum-bias distributions, e.g KNO-style distributions).
- p_T distributions of particles from the underlying event show that parton shower effects need to be tuned in addition to p_Tmin and the hadronic matter distributions.
- JIMMY Tuning A describes the p_T distributions for particles in the underlying event.
- Future PYTHIA tunings should take into account the tuning of PARP(67) as indicated by data of both soft (CDF – UE) and hard (D0 – dijet azimuthal decorrelation) processes.

