Event shapes for hadron colliders

Gavin P. Salam
(in collaboration with Andrea Banfi \& Giulia Zanderighi)
LPTHE, Universities of Paris VI and VII and CNRS
HERA-LHC workshop
CERN, Geneva, January 2005

- Perhaps the most basic class of final-state observables in $e^{+} e^{-}$
- Continuous measure of deviation from lowest-order 'Born' event

2-jet event: Thrust $\simeq 1$

- Many uses: serve as a QCD 'laboratory', both in $e^{+} e^{-}$and DIS:
- α_{s} fits
- Tuning of Monte Carlos
- Colour factor fits $\left(C_{A}, C_{F}, \ldots\right)$
- Studies of analytical
hadronisation models (1/Q shape functions, ...)
- Perhaps the most basic class of final-state observables in $e^{+} e^{-}$
- Continuous measure of deviation from lowest-order 'Born' event

2-jet event: Thrust $\simeq 1$

3-jet event: Thrust $\simeq 2 / 3$

- Many uses: serve as a QCD 'laboratory', both in $e^{+} e^{-}$and DIS:
- α_{s} fits
- Tuning of Monte Carlos
- Colour factor fits $\left(C_{A}, C_{F}, \ldots\right)$
- Studies of analytical hadronisation models $(1 / Q$, shape functions, ...)
- Perhaps the most basic class of final-state observables in $e^{+} e^{-}$
- Continuous measure of deviation from lowest-order 'Born' event

2-jet event: Thrust $\simeq 1$

3-jet event: Thrust $\simeq 2 / 3$

- Many uses: serve as a QCD 'laboratory', both in $e^{+} e^{-}$and DIS:
- α_{s} fits
- Tuning of Monte Carlos
- Colour factor fits $\left(C_{A}, C_{F}, \ldots\right)$
- Studies of analytical hadronisation models ($1 / Q$, shape functions, ...)
- Largely neglected at hadronic colliders
except: CDF broadening ('91) and D0 Thrust ('02).

Various processes:

- $p p \rightarrow \mathrm{~W} / \mathrm{Z} / \mathrm{H}$ boson + jet
- $p p \rightarrow 2$ jets

Standard applications (e.g.)

- Measure α_{s}
- As for 3-jet/2-jet ratio in $p \bar{p}$, reduce dependence on PDFs
- But for event-shapes \rightarrow distribution
- Far more information than 3-jet/2-jet ratio

Banfi Marchesini Smye Zanderighi '01
Main subject of this talk

Various processes:

- $p p \rightarrow \mathrm{~W} / \mathrm{Z} / \mathrm{H}$ boson + jet
- $p p \rightarrow 2$ jets

Standard applications (e.g.)

- Measure α_{s}
- As for 3-jet/2-jet ratio in $p \bar{p}$, reduce dependence on PDFs
- But for event-shapes \rightarrow distribution
- Far more information than 3-jet/2-jet ratio

Banfi Marchesini Smye Zanderighi '01
Main subject of this talk
New territory

- 4-jet $(2+2)$ topology \rightarrow novel perturbative structures
- 3 \& 4-jet topologies (\& g-jets) \rightarrow rich environment for
analytical non-pert. studies
- Underlying event - test
models (analytical \& MC)

Various processes:

- $p p \rightarrow \mathrm{~W} / \mathrm{Z} / \mathrm{H}$ boson + jet
- $p p \rightarrow 2$ jets

Standard applications (e.g.)

- Measure α_{s}
- As for 3-jet/2-jet ratio in $p \bar{p}$, reduce dependence on PDFs
- But for event-shapes \rightarrow distribution
- Far more information than 3-jet/2-jet ratio

Banfi Marchesini Smye Zanderighi '01
Main subject of this talk
New territory

- 4-jet $(2+2)$ topology \rightarrow novel perturbative structures
soft colour evln matrices
- 3 \& 4-jet topologies (\& g-jets) \rightarrow rich environment for analytical non-pert. studies
- Underlying event - test models (analytical \& MC).

Various processes:

- $p p \rightarrow \mathrm{~W} / \mathrm{Z} / \mathrm{H}$ boson + jet
- $p p \rightarrow 2$ jets

Banfi Marchesini Smye Zanderighi '01
Main subject of this talk
Standard applications (e.g.)

- Measure α_{s}
- As for 3-jet/2-jet ratio in $p \bar{p}$, reduce dependence on PDFs
- But for event-shapes \rightarrow distribution
- Far more information than 3-jet/2-jet ratio

New territory

- 4-jet $(2+2)$ topology \rightarrow novel perturbative structures
soft colour evln matrices
- 3 \& 4-jet topologies (\& g-jets) \rightarrow rich environment for analytical non-pert. studies
- Underlying event - test models (analytical \& MC).

Variety of event-shape observables \rightarrow complementary information \rightarrow disentangle the different physics issues.

Soft colour evolution

Multi-jet final states: relative colour of pairs of hard parton determines soft large-angle radiation.

2 jets: always in a colour singlet

3 jets: colour state of any pair fixed by third parton (colour conservation).

4 jets: a given pair can be in various colour states. Soft virtual corrections mix colour states.

Soft colour evolution

Multi-jet final states: relative colour of pairs of hard parton determines soft large-angle radiation.

2 jets: always in a colour singlet

3 jets: colour state of any pair fixed by third parton (colour conservation).

4 jets: a given pair can be in various colour states. Soft virtual corrections mix colour states.

Soft colour evolution

Multi-jet final states: relative colour of pairs of hard parton determines soft large-angle radiation.

2 jets: always in a colour singlet

3 jets: colour state of any pair fixed by third parton (colour conservation).

4 jets: a given pair can be in various colour states. Soft virtual corrections mix colour states.

Soft colour evolution

Multi-jet final states: relative colour of pairs of hard partons determines soft large-angle radiation.

2 jets: always in a colour singlet

3 jets: colour state of any pair fixed by third parton (colour conservation).

4 jets: a given pair can be in various colour states. Soft virtual corrections mix colour states.

Resummation leads to matrix evolution equation for colour state of

 amplitudes ('soft anomalous dimenions')
Soft colour evolution

Multi-jet final states: relative colour of pairs of hard partons determines soft large-angle radiation.

2 jets: always in a colour singlet

3 jets: colour state of any pair fixed by third parton (colour conservation).

4 jets: a given pair can be in various colour states. Soft virtual corrections mix colour states.

Resummation leads to matrix evolution equation for colour state of amplitudes ('soft anomalous dimenions')

Developed at Stony Brook: Botts, Kidonakis, Oderda \& Sterman '89-99

Interesting to test it (NB: used also for top threshold corrections).

Fixed order

- Event shapes trivial for Born events (e.g. p $\bar{p} \rightarrow 2$ jets, thrust $=1$)
- First non-trivial order (LO) is Born +1 parton, i.e. $p \bar{p} \rightarrow 3$ jets
- For NLO, need a program like NLOJET++ $(p \bar{p} \rightarrow 3$ jets @ NLO)
- Also:
- Kilgore-Giele code ($p \bar{p} \rightarrow 3$ jets @ NLO),
- MCFM ($p \bar{p} \rightarrow W / Z / H+2$ jets @ NLO)

Campbell \& Ellis '02 Resummation

Fixed order

- Event shapes trivial for Born events (e.g. p $\bar{p} \rightarrow 2$ jets, thrust $=1$)
- First non-trivial order (LO) is Born +1 parton, i.e. $p \bar{p} \rightarrow 3$ jets
- For NLO, need a program like NLOJET++ ($p \bar{p} \rightarrow 3$ jets @ NLO)
- Also:
- Kilgore-Giele code ($p \bar{p} \rightarrow 3$ jets @ NLO),
- MCFM ($p \bar{p} \rightarrow W / Z / H+2$ jets @ NLO)

Campbell \& Ellis '02

Resummation

- In $e^{+} e^{-}$it was always done by hand, one observable at a time.
- Next-to-leading logs (NLL) are tedious, complicated, error-prone.
- Recently automated: Computer-Automated Expert Semi-Analytical Resummer (CAESAR).

Banfi, GPS \& Zanderighi '01-'04

- For $p \bar{p} \rightarrow 2$ jets, uses 'Stony Brook' soft-colour evolution matrices.
- Currently restricted to continuously-global observables

Analytical work (done once and for all)

A1. derive a master formula for a generic observable in terms of simple properties of the observable
A2. formulate the exact applicability conditions for the master formula
\square
N1. let an "expert system" investigate the applicability conditions N 2 . it also determines the inputs for the master formula
N3. straightforward evaluation of the master formula, including phase space integration etc.

Automated resummation

Analytical work (done once and for all)
A1. derive a master formula for a generic observable in terms of simple properties of the observable
A2. formulate the exact applicability conditions for the master formula
Numerical work (to be repeated for each observable)
N1. let an "expert system" investigate the applicability conditions
N2. it also determines the inputs for the master formula
N3. straightforward evaluation of the master formula, including phase space integration etc.
\square N1 and N2 are core of automation
a) they require high precision arithmetic to take asymptotic (soft \& collinear) limits
b) validatation of hypotheses uses methods inspired by "Experimental

Automated resummation

Analytical work (done once and for all)
A1. derive a master formula for a generic observable in terms of simple properties of the observable
A2. formulate the exact applicability conditions for the master formula
Numerical work (to be repeated for each observable)
N1. let an "expert system" investigate the applicability conditions
N 2 . it also determines the inputs for the master formula
N3. straightforward evaluation of the master formula, including phase space integration etc.

Note: N1 and N2 are core of automation
a) they require high precision arithmetic to take asymptotic (soft \& collinear) limits
b) validatation of hypotheses uses methods inspired by "Experimental Mathematics"

Global observable:
e.g. total $e^{+} e^{-}$Broadening, B

making $B \ll 1$ restricts emissions everywhere.

Global observable:
e.g. total $e^{+} e^{-}$Broadening, B

making $B \ll 1$ restricts emissions everywhere.

Coherence + globalness:

 if independent (proved) Answers guaranteed to NLL accuracy

Global observable:
e.g. total $e^{+} e^{-}$Broadening, B

Non-Global observable:

Right-hemisphere Broadening, B_{R}
making $B \ll 1$ restricts emissions everywhere.

Coherence + globalness:
\Leftrightarrow emissions can be resummed as if independent (proved)

Answers guaranteed to NLL accuracy

Global observable:
e.g. total $e^{+} e^{-}$Broadening, B

making $B \ll 1$ restricts emissions everywhere.

Coherence + globalness:
\Leftrightarrow emissions can be resummed as if independent (proved)

Answers guaranteed to NLL accuracy

Non-Global observable:
Right-hemisphere Broadening, B_{R}

making $B_{R} \ll 1$ restricts emissions in right-hand hemisphere $\left(\mathcal{H}_{\mathcal{R}}\right)$.

Global observable:

e.g. total $e^{+} e^{-}$Broadening, B

making $B \ll 1$ restricts emissions everywhere.

Coherence + globalness:
\Leftrightarrow emissions can be resummed as if independent (proved)

Answers guaranteed to NLL accuracy

Non-Global observable:
Right-hemisphere Broadening, B_{R}

making $B_{R} \ll 1$ restricts emissions in right-hand hemisphere $\left(\mathcal{H}_{\mathcal{R}}\right)$.

Tempting to assume one can:

- ignore left hemisphere $\left(\mathcal{H}_{\mathcal{L}}\right)$
- use independent emission

Global observable:

e.g. total $e^{+} e^{-}$Broadening, B

making $B \ll 1$ restricts emissions everywhere.

Coherence + globalness:
\Leftrightarrow emissions can be resummed as if independent (proved)

Answers guaranteed to NLL accuracy

Non-Global observable:
Right-hemisphere Broadening, B_{R}

making $B_{R} \ll 1$ restricts emissions in right-hand hemisphere $\left(\mathcal{H}_{\mathcal{R}}\right)$.

Tempting to assume one can:

- ignore left hemisphere $\left(\mathcal{H}_{\mathcal{L}}\right)$
- use independent emission approximation in $\mathcal{H}_{\mathcal{R}}$.

Global observable:

e.g. total $e^{+} e^{-}$Broadening, B

making $B \ll 1$ restricts emissions everywhere.

Coherence + globalness:
\Leftrightarrow emissions can be resummed as if independent (proved)

Answers guaranteed to NLL accuracy

Non-Global observable:
Right-hemisphere Broadening, B_{R}

making $B_{R} \ll 1$ restricts emissions in right-hand hemisphere $\left(\mathcal{H}_{\mathcal{R}}\right)$.

Tempting to assume one can:

- ignore left hemisphere $\left(\mathcal{H}_{\mathcal{L}}\right)$
- use independent emission approximation in $\mathcal{H}_{\mathcal{R}}$.

WRONG AT NLL ACCURACY
Dasgupta \& GPS '01

All-orders:

Forbid coherent radiation from energy-ordered ensembles of large-angle gluons

Difficulties:

- Logarithms resummed so far only in large- N_{c} limit
- In general, boundary between the two regions may have arbitrary shape.
- It may depend on the pattern of emissions (e.g. with jet algorithm).

Appleby \& Seymour '02, '03

All-orders:

Forbid coherent radiation from energy-ordered ensembles of large-angle gluons

Difficulties:

- Logarithms resummed so far only in large- N_{c} limit
- In general, boundary between the two regions may have arbitrary shape.
- It may depend on the pattern of emissions (e.g. with jet algorithm).

Appleby \& Seymour '02, '03

Resummation of NG observables

All-orders:

Forbid coherent radiation from energy-ordered ensembles of large-angle gluons

Difficulties:

- Logarithms resummed so far only in large- N_{c} limit
- In general, boundary between the two regions may have arbitrary shape.
- It may depend on the pattern of emissions (e.g. with jet algorithm).

Appleby \& Seymour '02, '03

Resummation of a general non-global observable is tricky. For time-being CAESAR deals only with global observables.
NB: (most) Monte Carlo's are also best suited to global observables

Experimental considerations

Contradiction?

Theoretical calculations are for global observables.
But experiments only have detectors in limited rapidity range.
(Strictly: series of sub-detectors, of worsening quality as rapidity increases)

Experimental considerations

Contradiction?

Theoretical calculations are for global observables. But experiments only have detectors in limited rapidity range. (Strictly: series of sub-detectors, of worsening quality as rapidity increases)

Model by cut around beam $|\eta|<\eta_{\text {max }}$ \Rightarrow Problems with globalness

Take cut as being edge of most forward detector with momentum or
energy resolution:

Experimental considerations

Contradiction?

Theoretical calculations are for global observables. But experiments only have detectors in limited rapidity range. (Strictly: series of sub-detectors, of worsening quality as rapidity increases)

Model by cut around beam $|\eta|<\eta_{\text {max }}$
\Rightarrow Problems with globalness

Take cut as being edge of most forward detector with momentum or energy resolution:

	Tevatron	LHC
$\eta_{\max }$	3.5	5.0

Select events with central, hard jets (x_{1}, x_{2} not too small), with transverse momentum P_{\perp}.

From kinematics, emissions (k) near forward detector edges typically have small transverse momentum:

Select events with central, hard jets (x_{1}, x_{2} not too small), with transverse momentum P_{\perp}.

From kinematics, emissions (k) near forward detector edges typically have small transverse momentum:

$$
k_{\perp} \sim P_{\perp} e^{-\eta_{0}} \ll P_{\perp}
$$

If event-shape value is always sufficiently large that such an emission contributes negligibly, then:
\square

Sidestepping non-globalness

Select events with central, hard jets (x_{1}, x_{2} not too small), with transverse momentum P_{\perp}.

From kinematics, emissions (k) near forward detector edges typically have small transverse momentum:

$$
k_{\perp} \sim P_{\perp} e^{-\eta_{0}} \ll P_{\perp}
$$

If event-shape value is always sufficiently large that such an emission contributes negligibly, then:
we can ignore rapidity cut \& pretend measurement is global
\square
Proceed as follows:

- Calculate distribution without any rapidity cutoff
- Determine smallest 'typical' value of observable
- Check self-consistency: i.e. that in comparison, emissions beyond cutoff contribute negligbly.

Sidestepping non-globalness

Select events with central, hard jets (x_{1}, x_{2} not too small), with transverse momentum P_{\perp}.

From kinematics, emissions (k) near forward detector edges typically have small transverse momentum:

$$
k_{\perp} \sim P_{\perp} e^{-\eta_{0}} \ll P_{\perp}
$$

If event-shape value is always sufficiently large that such an emission contributes negligibly, then:
we can ignore rapidity cut \& pretend measurement is global
Proceed as follows:

- Calculate distribution without any rapidity cutoff
- Determine smallest 'typical' value of observable
- Check self-consistency: i.e. that in comparison, emissions beyond cutoff contribute negligbly. Banfi, Marchesini, Smye \& Zanderighi '01

Results that follow based on this (illustrative) event selection:

- Run longitudinally invariant inclusive k_{t} jet algorithm (could also use midpoint cone)
- Require hardest jet to have $P_{\perp, 1}>P_{\perp, \min }=50 \mathrm{GeV}$
- Require two hardest jets to be central $\left|\eta_{1}\right|,\left|\eta_{2}\right|<\eta_{c}=0.7$

> Pure resummed results
> no matching to NLO (or even LO) Shown for Tevatron run II

Some observables are naturally defined in terms of all particles in the event, e.g. Global Transverse Thrust

$$
T_{\perp, g} \equiv \max _{\vec{n}_{T}} \frac{\sum_{i}\left|\vec{q}_{\perp i} \cdot \vec{n}_{T}\right|}{\sum_{i} q_{\perp i}}, \quad \tau_{\perp, g}=1-T_{\perp, g}
$$

Some observables are naturally defined in terms of all particles in the event, e.g. Global Transverse Thrust

$$
T_{\perp, g} \equiv \max _{\vec{n}_{T}} \frac{\sum_{i}\left|\vec{q}_{\perp i} \cdot \vec{n}_{T}\right|}{\sum_{i} q_{\perp i}}, \quad \tau_{\perp, g}=1-T_{\perp, g}
$$

and Global Thrust Minor

$$
T_{m, g} \equiv \frac{\sum_{i}\left|\vec{q}_{i} \cdot \vec{n}_{m}\right|}{\sum_{i} q_{\perp i}}, \quad \vec{n}_{m} \cdot \vec{n}_{T}=0
$$

Use exclusive long. inv. k_{t} algorithm: successive recombination of pair with smallest closeness measure $d_{k l}, d_{k B}$:

$$
d_{k B}=q_{\perp k}^{2}, \quad d_{k l}=\min \left\{q_{\perp k}^{2}, q_{\perp \prime}^{2}\right\}\left(\left(\eta_{k}-\eta_{l}\right)^{2}+\left(\phi_{k}-\phi_{l}\right)^{2}\right) .
$$

Define $d^{(n)}$ as smallest $d_{k l}, d_{k B}$ when only n pseudo-jets left. Examine (normalised) 3-jet resolution threshold

$$
y_{23}=\frac{1}{\left(E_{\perp, 1}+E_{\perp, 2}\right)^{2}} d^{(3)}
$$

Generalisation of 3-jet cross section

Use exclusive long. inv. k_{t} algorithm: successive recombination of pair with smallest closeness measure $d_{k l}, d_{k B}$:

$$
d_{k B}=q_{\perp k}^{2}, \quad d_{k l}=\min \left\{q_{\perp k}^{2}, q_{\perp \prime}^{2}\right\}\left(\left(\eta_{k}-\eta_{l}\right)^{2}+\left(\phi_{k}-\phi_{l}\right)^{2}\right) .
$$

Define $d^{(n)}$ as smallest $d_{k l}, d_{k B}$ when only n pseudo-jets left. Examine (normalised) 3-jet resolution threshold

$$
y_{23}=\frac{1}{\left(E_{\perp, 1}+E_{\perp, 2}\right)^{2}} \max _{n \geq 3}\left\{d^{(n)}\right\}
$$

Generalisation of 3-jet cross section

Probability $P(v)$ that event shape is smaller than some value v :

$$
P(v)=\exp \left[-G_{12} \frac{\alpha_{s} L^{2}}{2 \pi}+\cdots\right], \quad L=\ln \frac{1}{v}
$$

Ev.Shp.	G_{12}
$\tau_{\perp, g}$	$2 C_{B}+C_{J}$
$T_{m, g}$	$2 C_{B}+2 C_{J}$
y_{23}	$\frac{1}{2} C_{B}+\frac{1}{2} C_{J}$

$C_{B}=$ total colour of Beam partons
$C_{J}=$ total colour of Jet partons

Probability $P(v)$ that event shape is smaller than some value v :

$$
P(v)=\exp \left[-G_{12} \frac{\alpha_{S} L^{2}}{2 \pi}+\cdots\right], \quad L=\ln \frac{1}{v}
$$

Ev.Shp.	G_{12}
$\tau_{\perp, g}$	$2 C_{B}+C_{J}$
$T_{m, g}$	$2 C_{B}+2 C_{J}$
y_{23}	$\frac{1}{2} C_{B}+\frac{1}{2} C_{J}$

$C_{B}=$ total colour of Beam partons $C_{J}=$ total colour of Jet partons

Probability $P(v)$ that event shape is smaller than some value v :

$$
P(v)=\exp \left[-G_{12} \frac{\alpha_{s} L^{2}}{2 \pi}+\cdots\right], \quad L=\ln \frac{1}{v}
$$

Ev.Shp.	G_{12}
$\tau_{\perp, g}$	$2 C_{B}+C_{J}$
$T_{m, g}$	$2 C_{B}+2 C_{J}$
y_{23}	$\frac{1}{2} C_{B}+\frac{1}{2} C_{J}$

$C_{B}=$ total colour of Beam partons
$C_{J}=$ total colour of Jet partons

Probability $P(v)$ that event shape is smaller than some value v :

$$
P(v)=\exp \left[-G_{12} \frac{\alpha_{s} L^{2}}{2 \pi}+\cdots\right], \quad L=\ln \frac{1}{v}
$$

Ev.Shp.	G_{12}
$\tau_{\perp, g}$	$2 C_{B}+C_{J}$
$T_{m, g}$	$2 C_{B}+2 C_{J}$
y_{23}	$\frac{1}{2} C_{B}+\frac{1}{2} C_{J}$

$C_{B}=$ total colour of Beam partons
$C_{J}=$ total colour of Jet partons

Beam cut: $\tau_{\perp, g} \gtrsim 0.15 e^{-\eta_{\text {max }}}$

Probability $P(v)$ that event shape is smaller than some value v :

$$
P(v)=\exp \left[-G_{12} \frac{\alpha_{L} L^{2}}{2 \pi}+\cdots\right], \quad L=\ln \frac{1}{v}
$$

Ev.Shp.	G_{12}
$\tau_{\perp, g}$	$2 C_{B}+C_{J}$
$T_{m, g}$	$2 C_{B}+2 C_{J}$
y_{23}	$\frac{1}{2} C_{B}+\frac{1}{2} C_{J}$

$C_{B}=$ total colour of Beam partons $C_{J}=$ total colour of Jet partons

Beam cut: $T_{m, g} \gtrsim e^{-\eta_{\text {max }}}$

Probability $P(v)$ that event shape is smaller than some value v :

$$
P(v)=\exp \left[-G_{12} \frac{\alpha_{s} L^{2}}{2 \pi}+\cdots\right], \quad L=\ln \frac{1}{v}
$$

Ev.Shp.	G_{12}
$\tau_{\perp, g}$	$2 C_{B}+C_{J}$
$T_{m, g}$	$2 C_{B}+2 C_{J}$
y_{23}	$\frac{1}{2} C_{B}+\frac{1}{2} C_{J}$

$C_{B}=$ total colour of Beam partons
$C_{J}=$ total colour of Jet partons

Beam cut: $y_{23} \gtrsim e^{-2 \eta_{\text {max }}}$ [because $y_{23} \sim k_{t}^{2}$]

Divide event into central region $(\mathcal{C}$, say $|\eta|<1.1)$ and rest of event $(\overline{\mathcal{C}})$.
[NB: \exists considerable freedom in definition of \mathcal{C} : e.g. can also be two hardest jets] Define central \perp mom., and rapidity:

$$
Q_{\perp, \mathcal{C}}=\sum_{i \in \mathcal{C}} q_{\perp i}, \quad \eta_{\mathcal{C}}=\frac{1}{Q_{\perp, \mathcal{C}}} \sum_{i \in \mathcal{C}} \eta_{i} q_{\perp i}
$$

and an exponentially suppressed forward term,

$$
\mathcal{E}_{\overline{\mathcal{C}}}=\frac{1}{Q_{\perp, \mathcal{C}}} \sum_{i \notin \mathcal{C}} q_{\perp i} e^{-\left|\eta_{i}-\eta_{\mathcal{C}}\right|}
$$

Define a non-global event-shape in \mathcal{C}. Then add on $\mathcal{E}_{\bar{C}}$.
Result is a global event shape, with suppressed sensitivity

Divide event into central region $(\mathcal{C}$, say $|\eta|<1.1)$ and rest of event $(\overline{\mathcal{C}})$. [NB: \exists considerable freedom in definition of \mathcal{C} : e.g. can also be two hardest jets] Define central \perp mom., and rapidity:

$$
Q_{\perp, \mathcal{C}}=\sum_{i \in \mathcal{C}} q_{\perp i}, \quad \eta_{\mathcal{C}}=\frac{1}{Q_{\perp, \mathcal{C}}} \sum_{i \in \mathcal{C}} \eta_{i} q_{\perp i}
$$

and an exponentially suppressed forward term,

$$
\mathcal{E}_{\overline{\mathcal{C}}}=\frac{1}{Q_{\perp, \mathcal{C}}} \sum_{i \notin \mathcal{C}} q_{\perp i} e^{-\left|\eta_{i}-\eta_{\mathcal{C}}\right|}
$$

Define a non-global event-shape in \mathcal{C}. Then add on $\mathcal{E}_{\overline{\mathcal{C}}}$. Result is a global event shape, with suppressed sensitivity to forward region.

Examples

- Split \mathcal{C} into two pieces: Up, Down
- Define jet masses for each

$$
\rho_{X, \mathcal{C}} \equiv \frac{1}{Q_{\perp, \mathcal{C}}^{2}}\left(\sum_{i \in \mathcal{C}_{X}} q_{i}\right)^{2}, \quad X=U, D
$$

Define sum and heavy-jet masses

$$
\rho_{S, \mathcal{C}} \equiv \rho_{U, \mathcal{C}}+\rho_{D, \mathcal{C}}, \quad \rho_{H, \mathcal{C}} \equiv \max \left\{\rho_{U, \mathcal{C}}, \rho_{D, \mathcal{C}}\right\}
$$

Define global extension, with extra forward-suppressed term

$$
\rho_{S, \mathcal{E}} \equiv \rho_{S, \mathcal{C}}+\mathcal{E}_{\overline{\mathcal{C}}}, \quad \rho_{H, \mathcal{E}} \equiv \rho_{H, \mathcal{C}}+\mathcal{E}_{\overline{\mathcal{C}}}
$$

- Similarly: total and wide jet-broadenings

$$
B_{T, \mathcal{E}} \equiv B_{T, \mathcal{C}}+\mathcal{E}_{\overline{\mathcal{C}}}, \quad B_{W, \mathcal{E}} \equiv B_{W, \mathcal{C}}+\mathcal{E}_{\overline{\mathcal{C}}}
$$

$$
P(v)=\exp \left[-G_{12} \frac{\alpha_{s} L^{2}}{2 \pi}+\cdots\right], \quad L=\ln \frac{1}{v}
$$

Ev.Shp.	G_{12}
$\rho_{S, \mathcal{E}}$	$C_{B}+C_{J}$
$\rho_{H, \mathcal{E}}$	$C_{B}+C_{J}$
$B_{T, \mathcal{E}}$	$C_{B}+2 C_{J}$
$B_{W, \mathcal{E}}$	$C_{B}+2 C_{J}$
\vdots	\vdots

$C_{B}=$ total colour of Beam partons
$C_{J}=$ total colour of Jet partons

$$
P(v)=\exp \left[-G_{12} \frac{\alpha_{s} L^{2}}{2 \pi}+\cdots\right], \quad L=\ln \frac{1}{v}
$$

Ev.Shp.	G_{12}
$\rho_{S, \mathcal{E}}$	$C_{B}+C_{J}$
$\rho_{H, \mathcal{E}}$	$C_{B}+C_{J}$
$B_{T, \mathcal{E}}$	$C_{B}+2 C_{J}$
$B_{W, \mathcal{E}}$	$C_{B}+2 C_{J}$
\vdots	\vdots

$C_{B}=$ total colour of Beam partons
$C_{J}=$ total colour of Jet partons

Beam cuts: $B_{X, \mathcal{E}}, \rho_{X, \mathcal{E}} \gtrsim e^{-2 \eta_{\max }}$ [because $\mathcal{E}_{\overline{\mathcal{C}}} \sim k_{t} e^{-|\eta|}$]

By momentum conservation

$$
\sum_{i \in \mathcal{C}} \vec{q}_{\perp i}=-\sum_{i \notin \mathcal{C}} \vec{q}_{\perp i}
$$

Use central particles to define recoil term, which is indirectly sensitive to non-central emissions

$$
\mathcal{R}_{\perp, \mathcal{C}} \equiv \frac{1}{Q_{\perp, \mathcal{C}}}\left|\sum_{i \in \mathcal{C}} \vec{q}_{\perp i}\right|
$$

Define event shapes exclusively in terms of central particles:

$$
\rho_{X, \mathcal{R}} \equiv \rho_{X, \mathcal{C}}+\mathcal{R}_{\perp, \mathcal{C}}, \quad B_{X, \mathcal{R}} \equiv B_{X, \mathcal{C}}+\mathcal{R}_{\perp, \mathcal{C}}, \ldots
$$

These observables are indirectly global
First studied at HERA ($B_{z E}$ broadening)

CAESAR resummation works for observables having direct exponentiation:

$$
P(v)=e^{L g_{1}\left(\alpha_{s} L\right)+g_{2}\left(\alpha_{s} L\right)+\ldots}
$$

For recoil observables, exponentiation holds fully only after Fourier \& other integral transforms (generalised b-space resummation).

Manifestation: NLLs $\left(g_{2}\left(\alpha_{s} L\right)\right)$ diverge at some $\alpha_{s} L \sim 1$. Consequently, cannot extend distribution to $v=0$ - must cut before divergence.

CAESAR resummation works for observables having direct exponentiation:

$$
P(v)=e^{L g_{1}\left(\alpha_{s} L\right)+g_{2}\left(\alpha_{s} L\right)+\ldots}
$$

For recoil observables, exponentiation holds fully only after Fourier \& other integral transforms (generalised b-space resummation).
Manifestation: NLLs $\left(g_{2}\left(\alpha_{s} L\right)\right)$ diverge at some $\alpha_{s} L \sim 1$.
Consequently, cannot extend distribution to $v=0$ - must cut before divergence.

CAESAR resummation works for observables having direct exponentiation:

$$
P(v)=e^{L g_{1}\left(\alpha_{s} L\right)+g_{2}\left(\alpha_{s} L\right)+\ldots}
$$

For recoil observables, exponentiation holds fully only after Fourier \& other integral transforms (generalised b-space resummation).
Manifestation: NLLs $\left(g_{2}\left(\alpha_{s} L\right)\right)$ diverge at some $\alpha_{s} L \sim 1$.
Consequently, cannot extend distribution to $v=0$ - must cut before divergence.

recoil transverse thrust

Quite large effect: $\sim 15 \%$ of X -sct is beyond cutoff

CAESAR resummation works for observables having direct exponentiation:

$$
P(v)=e^{L g_{1}\left(\alpha_{s} L\right)+g_{2}\left(\alpha_{s} L\right)+\ldots}
$$

For recoil observables, exponentiation holds fully only after Fourier \& other integral transforms (generalised b-space resummation).
Manifestation: NLLs $\left(g_{2}\left(\alpha_{s} L\right)\right)$ diverge at some $\alpha_{s} L \sim 1$.
Consequently, cannot extend distribution to $v=0$ - must cut before divergence.
recoil thrust minor

Moderate effect: few \% of X -sct is beyond cutoff

Summary of observables

Event-shape	Impact of $\eta_{\max }$	Resummation breakdown	Underlying Event	Jet hadronisation
$\tau_{\perp, g}$	tolerable	none	$\sim \eta_{\max } / Q$	$\sim 1 / Q$
$T_{m, g}$	tolerable	none	$\sim \eta_{\max } / Q$	$\sim 1 /\left(\sqrt{\alpha_{s}} Q\right)$
y_{23}	tolerable	none	$\sim \sqrt{y_{23} / Q}$	$\sim \sqrt{y_{23}} / Q$
$\tau_{\perp, \mathcal{E}}, \rho_{X, \mathcal{E}}$	negligible	none	$\sim 1 / Q$	$\sim 1 / Q$
$T_{m, \mathcal{E}}, B_{X, \mathcal{E}}$	negligible	none	$\sim 1 / Q$	$\sim 1 /\left(\sqrt{\alpha_{s}} Q\right)$
$y_{23, \mathcal{E}}$	negligible	none	$\sim 1 / Q$	$\sim \sqrt{y_{23} / Q}$
$\tau_{\perp, \mathcal{R}}, \rho_{X, \mathcal{R}}$	none	serious	$\sim 1 / Q$	$\sim 1 / Q$
$T_{m, \mathcal{R}}, B_{X, \mathcal{R}}$	none	tolerable	$\sim 1 / Q$	$\sim 1 /\left(\sqrt{\alpha_{s}} Q\right)$
$y_{23, \mathcal{R}}$	none	intermediate	$\sim \sqrt{y_{23}} / Q$	$\sim \sqrt{y_{23}} / Q$

NB: there may be surprises after more detailed study, e.g. matching to NLO...

Grey entries are definitely subject to uncertainty

Summary of observables

Event-shape	Impact of $\eta_{\max }$	Resummation breakdown	Underlying Event	Jet hadronisation
$\tau_{\perp, g}$	tolerable	none	$\sim \eta_{\max } / Q$	$\sim 1 / Q$
$T_{m, g}$	tolerable	none	$\sim \eta_{\max } / Q$	$\sim 1 /\left(\sqrt{\alpha_{s}} Q\right)$
y_{23}	tolerable	none	$\sim \sqrt{y_{23}} / Q$	$\sim \sqrt{y_{23}} / Q$
$\tau_{\perp, \mathcal{E}}, \rho_{X, \mathcal{E}}$	negligible	none	$\sim 1 / Q$	$\sim 1 / Q$
$T_{m, \mathcal{E}}, B_{X, \mathcal{E}}$	negligible	none	$\sim 1 / Q$	$\sim 1 /\left(\sqrt{\alpha_{s}} Q\right)$
$y_{23, \mathcal{E}}$	negligible	none	$\sim 1 / Q$	$\sim \sqrt{y_{23}} / Q$
$\tau_{\perp, \mathcal{R}}, \rho_{X, \mathcal{R}}$	none	serious	$\sim 1 / Q$	$\sim 1 / Q$
$T_{m, \mathcal{R}}, B_{X, \mathcal{R}}$	none	tolerable	$\sim 1 / Q$	$\sim 1 /\left(\sqrt{\alpha_{s}} Q\right)$
$y_{23, \mathcal{R}}$	none	intermediate	$\sim \sqrt{y_{23}} / Q$	$\sim \sqrt{y_{23}} / Q$

NB: there may be surprises after more detailed study, e.g. matching to NLO...

Grey entries are definitely subject to uncertainty

Note complementarity between observables

Groundwork

- Essential that multijet event shapes also be studied in DIS and $e^{+} e^{-}$.
- Measurements recently published by LEP and in progress at HERA.
- Theoretical comparisons in pipeline.

Matching to NLO

- technology exists (NLOJET ++) for poor-man's matching, all channels $(g g \rightarrow g g, q q \rightarrow q q, \ldots)$ mixed together.
- To be 'sensible', matching must be done channel-by-channel. - Requires flavour information in fixed-order codes - but seldom there.

Groundwork

- Essential that multijet event shapes also be studied in DIS and $e^{+} e^{-}$.
- Measurements recently published by LEP and in progress at HERA.
- Theoretical comparisons in pipeline.

Matching to NLO

- technology exists (NLOJET++) for poor-man's matching, all channels $(g g \rightarrow g g, q q \rightarrow q q, \ldots)$ mixed together.
- To be 'sensible', matching must be done channel-by-channel.
- Requires flavour information in fixed-order codes - but seldom there. . .

Groundwork

- Essential that multijet event shapes also be studied in DIS and $e^{+} e^{-}$.
- Measurements recently published by LEP and in progress at HERA.
- Theoretical comparisons in pipeline.

Matching to NLO

- technology exists (NLOJET++) for poor-man's matching, all channels $(g g \rightarrow g g, q q \rightarrow q q, \ldots)$ mixed together.
- To be 'sensible', matching must be done channel-by-channel.
- Requires flavour information in fixed-order codes - but seldom there. . .

Please, PLEASE, PLEASE, could authors of fixed-order codes include information on flavours of partons, not just momenta

Groundwork

- Essential that multijet event shapes also be studied in DIS and $e^{+} e^{-}$.
- Measurements recently published by LEP and in progress at HERA.
- Theoretical comparisons in pipeline.

Matching to NLO

- technology exists (NLOJET++) for poor-man's matching, all channels $(g g \rightarrow g g, q q \rightarrow q q, \ldots)$ mixed together.
- To be 'sensible', matching must be done channel-by-channel.
- Requires flavour information in fixed-order codes - but seldom there. . .

Please, PLEASE, PLEASE, could authors of fixed-order codes include information on flavours of partons, not just momenta

Further info: hep-ph/0407287 and http://qcd-caesar.org

