

Startup running of a combined CMS-TOTEM trigger

Karsten Eggert CERN, PH Department

on behalf of the **TOTEM/CMS** Collaboration

LHC/HERA workshop, WG 4 (17. Jan. 2005)

CMS + TOTEM: Acceptance

CMS+TOTEM: largest acceptance detector ever built at a hadron collider

> 90 % of all diffractive protons are detected

10 million min. bias events, including all diffractive processes, in a 1 day run with β^* = 1540 m

Elastic Scattering Cross-Section

TOTEM

Diffraction at high β*: Acceptance

Leading protons in diffraction characterized by $t = -p^2 \theta^2$ and $\xi = \Delta p / p$

β* = 1540 m, RP at 220 m:

~ 90 % of all diffractive protons are seen in the Roman Pots

(assuming $\frac{d\sigma}{d\xi dt} \propto \frac{1}{\xi} e^{-5.6|t|}$).

Resolution in \xi:

 β^* = 1540 m: σ(ξ) = 5 x 10⁻³ ($\mathcal{L} \le 2.4 \text{ x } 10^{29} \text{ cm}^{-2} \text{ s}^{-1}$)

CMS / TOTEM : ideal detector to study diffractive and forward physics with proton measurements

- Soft and hard diffraction in Single and Double Pomeron Exchange production of jets, W, J/ψ, heavy flavours, hard photons
- Excellent proton measurement: gap survival
- Double Pomeron exchange as a gluon factory
 - Production of low mass systems (SUSY, x ,D-Y,jet-jet, …)
 - Glue balls, ...
 - Higgs production ?
- Structure functions (parton saturation) with and without detected protons
- Forward physics: DCC, particle and energy flow
- γγ physics

Different running scenarios ($\beta^* = 1540, 172, 18, 0.5 \text{ m}$)

Running Scenarios

Scenario	1	2	3	4
Physics:	low t elastic,	diffraction	large t elastic	hard diffraction
	σ _{tot} , min. bias, soft diffraction			
β [*] [m]	1540	1540	18	172
N of bunches	43	156	2808	936 - 2808
N of part. per bunch	0.3 x 10 ¹¹	(0.6 - 1.15) x 10 ¹¹	1.15 x 10 ¹¹	1.15 x 10 ¹¹
Half crossing angle [µrad]	0	0	150	150
Transv. norm. emitt. [μm rad]	1	1 - 3.75	3.75	3.75
RMS beam size at IP [µm]	454	454 - 880	95	294
RMS beam diverg. [µrad]	0.29	0.29 - 0.57	5.28	1.7
t _{min} @ 220 m [GeV ²]	2 x 10 ⁻³	2 x 10 ⁻³	1.3	2 x 10 ⁻²
t _{max} @ 220 m [GeV ²]	0.6	0.6	7	0.6
Peak luminosity [cm ⁻² s ⁻¹]	1.6 x 10 ²⁸	2.4 x 10 ²⁹	3.6 x 10 ³²	(1 -4) x 10 ³¹

New optics $\beta^*=172 \text{ m}$

× 10⁻¹

0.01

0.02

0.02

Ę

0.03

0.04

0.04

ŧ

0.05

Conclusion on new optics ($\beta^*=172 \text{ m}$) - preliminary

- Luminosity of 4 x 10^{31} cm⁻² s⁻¹
- About 90% of diffractive protons are seen in the RP at 220 m
- ξ resolution of few 10 $^{\text{-4}}$ to 10 $^{\text{-3}}$
- + θ resolution of few μrad

Future:

- more detailed studies on acceptance and resolution
- further optimization towards higher luminosity

Level-1 Trigger Schemes for min. bias physics

$(L = 1.6 \times 10^{28} \text{ cm}^{-2} \text{ s}^{-1})$

٠

Runs with ~90% detection of diffractive protons

Initial several one day runs with β^* = 1540 m and 43 bunches

L = 1.6 x 10²⁸ cm⁻² s⁻¹ 10 ⁸ min. bias events / day 1000 events / μbarn per day CMS min bias, T1, T2, forward protons

Trigger combinations:

central diffraction:

single diffraction:

heavy flavours, jets :

• $\beta^* = 1540 \text{ m and } 156 \text{ bunches}$ L = 2.4 x 10²⁹ cm⁻² s⁻¹

20 events / nbarn per day p _{left} x p _{right} x central activity (T1, T2, CMS forward cal.) _{left} x p _{right} low pt leptons, min jets

β* = 172 m and 2808 bunches L = 4 x 10³¹ cm⁻² s⁻¹
3000 events / nbarn per day
Trigger combinations: Iow pt leptons, jets, diffr. protons

Exclusive Production by DPE: Examples

Advantage: Selection rules: $J^P = 0^+$, 2^+ , 4^+ ; C = +1

 \Rightarrow reduced background, determination of quantum numbers.

Good ϕ resolution in TOTEM: determine parity: $P = (-1)^{J+1} \Leftrightarrow d\sigma/d\phi \sim 1 + -\cos 2\phi$

Particle	σ _{excl}	Decay channel	BR	Rate at 2x10 ²⁹ cm ⁻² s ⁻¹	Rate at 10 ³¹ cm ⁻² s ⁻¹
				(no acceptance / analysis cuts)	
χ _{c0} (3.4 GeV)	3 μb [KMRS]	$\gamma J/\psi \rightarrow \gamma \mu^+\mu^-$ $\pi^+ \pi^- K^+ K^-$	6 x 10-⁴ 0.018	1.5 / h 46 / h	62 / h 1900 / h
χ _{b0} (9.9 GeV)	4 nb [KMRS]	$\gamma Y \rightarrow \gamma \mu^{\star} \mu^{-}$	< 10 ⁻³	0.07 / d	3 / d
H (120 GeV)	0.1 ÷ 100 fb assume 3 fb	bb	0.68	0.02 / y	1 / y

Higgs needs L ~ 10^{33} cm⁻² s⁻¹, i.e. a running scenario for $\beta^* = 0.5$ m:

- try to modify optics locally,
- try to move detectors closer to the beam,
- install additional Roman Pots in cold LHC region at a later stage.

<u>High luminosity runs (β*=0.5m) with ξ>2.5%</u>

 $L = 0.5 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$

Trigger condition 1: jets and leptons x p _{left} x p _{right}

Trigger condition 2 : jets and leptons x p left x gap right

define the trigger thresholds:

2 jets with pt > 40 GeV for the Higgs

2 large pt jets for high mass central diffraction

Higgs event Characteristics: dN/dt & ξ_{min} $\xi min < 0.3\%$ for one side trigger with ξ_{max} > 2.5%

$-t < 1 \text{ GeV}^2$

 \Rightarrow should detect p's down to $\xi \leq 10^{\text{-3}}$

 ξ acceptance?

 \Rightarrow dN/dt \propto exp(6t)

З

5

 $\eta_{\text{b}}^{\text{max}}$

2

0.2

0

 \Rightarrow All the b-jets are confined within $|\eta| \leq 5$.

Detection Prospects for Double Pomeron Events

In collaboration with CMS

TOTEM

Double Pomeron Exchange: Cross-Section

 $\sigma_{\text{DPE}} = 0.5 - 1 \text{ mb} \Rightarrow (1-2) \text{ x } 10^7 \text{ events per day at } \beta^* = 1540 \text{ m}, \ \mathcal{L} = 2 \text{ x } 10^{29} \text{ cm}^{-2} \text{ s}^{-1}$

[ϵ from Pomeron trajectory $\alpha(t) = 1 + \epsilon + \alpha' t$]

TOTEM

