Alignment and calibration of the ZEUS Leading Proton Spectrometer (LPS)

presented by M. Arneodo

See also: talk by R. Sacchi in March and Zeus Coll., Z. Phys. C 73 (1997) 253

The Leading Proton Spectrometer

Two independent spectrometers: **S1,S2,S3** – one pot in each station dipoles with horizontal bending

S4,S5,S6 – two pots in each station dipoles with vertical bending

In total: 54 Si microstrip detector planes 50,000 channels 23 magnetic elements

The Leading Proton Spectrometer

Could measure proton momentum from two types of events:

- 1) **3-station events**: hits in three stations (eg S4, S5, S6) as a by-product get coordinates of interaction point
- 2) **2-station events**: hits in two stations (eg S4, S5 only) take coordinates of interaction point from ZEUS central detector

The Leading Proton Spectrometer

VERTICAL

In this talk: focus on S4, S5, S6

LPS insertion into data-taking position (S4, S5, S6)

- Detector \rightarrow pot movement: stepping motors
- Pot movement: DC motors
- Lateral movements: stepping motors

In each pot: 6 Si microstrip detector planes 3 different strip orientations pitch≈ 100μm

A)

Z-Y view

X-Y view

Position of hits on detectors

Alignment: preliminaries

- •Subdivide the collected luminosity into *running periods* with stable conditions
- A new running period is introduced after
 - i) changes in the machine optics
 - ii) changes in the detector configuration:
 - new motor calibrations
 - changes in the number of active planes
 - anyway after maintainance work during shutdowns
- The alignment was performed independently for each running period
- Many degrees of freedom to be fixed; long and tedious iterative procedure

Alignment steps (S4, S5, S6)

- For each running period choose a reference run and do the following:
 - 1) Align the planes with respect to each other in each pot
 - 2) Align "up" pots with respect to "down" pots
 - 3) Align the three stations S4, S5 and S6 with respect to each other
 - 4) Align the whole spectrometer with respect to ZEUS
- Verify stability on all data-taking runs (iterate if necessary)
- Determine, for each proton fill, the direction of the incoming proton beam (the "beam tilt"): P_T calibration
- Typical resolutions: 20 $\mu\text{m}\oplus$ 10 μm (S1-S4); 20 $\mu\text{m}\oplus$ 30 μm (S5-S6)

Iterative procedure

Physics channels

- Key to any alignment: use tracks whose trajectory is known a priori
- Since protons move in magnetic fields (which cannot be turned off !), need tracks of known momentum
- Exploit the fact that diffractive cross section peaks at x_L=p'/p=1
- Select processes using central detector and then look at proton in LPS
- Peak narrow ! For ep \rightarrow ep⁰p, expected x_L width = 10⁻⁴

Physics channels

- Key to any alignment: use tracks whose trajectory is known a priori
- Since protons move in magnetic fields (which cannot be turned off !), need tracks of known momentum
- Exploit the fact that diffractive cross section peaks at x_L=p'/p=1
- Select processes using central detector and then look at proton in LPS
- Peak narrow !

Alternatively: inclusive diffraction (slightly wider diffractive peak, but more events)

e, X measured in central detector

1) Align planes within each pot

- Track impact point in pot determined using planes with two different orientations
- Compare with the other planes
- Residuals in the other planes are minimized by translating the planes in the x/y plane and rotating them around the z-axis
- The procedure is iterated on all planes

The procedure is cross-checked by looking at the residuals of the hits in each plane with respect to the track fitted through the entire spectrometer. residuals pot S5U

Minimum distance hit – fitted track

2) Align "up" pots wrt "down" pots

- Use tracks in the overlap region
- Use inclusive
 diffractive events
- Slopes dx/dz, dy/dz from global fit

3) Align the three stations relative to each other

- Horizontal plane: no bending, can use any track !
- Vertical plane: dipole magnet, use x_L=1 tracks from ρ⁰ events (straight in beam reference frame !)

 The third station is traslated in the x/y plane and rotated around z-axis until residuals with respect to the extrapolation of fitted line minimised

3) Align the three stations relative to each other

Events

- Horizontal plane: no bending, can use any track !
- Vertical plane: dipole magnet, use $x_1 = 1$ tracks from ρ^0 events
- In the two planes separately: define lines using two stations and extrapolate to third
- The third station is traslated in the x/y plane and rotated around z-axis until residuals with respect to the extrapolation of fitted line minimised

S4U.S5U-S6U

4) Align LPS relative to ZEUS

- Three-station tracks fitted without vertex constraint
- Extrapolate to z=0 to measure transverse coordinates of vertex
- Reconstructed vertex required to be consistent with the interaction vertex measured in ZEUS for all x_L values. Use diffractive events at x_L=1, and non-diffractive events at low x_L
- The three stations (S4,S5,S6) are traslated/rotated as a rigid body
- Good knowledge of the quadrupoles focal lengths and axes positions required (if needed, allowed to vary within tolerances)
- Beam-halo tracks do not point to interaction
 point

4) Align LPS relative to ZEUS

ρ^{o} events

Inclusive events

Determine direction of incoming proton beam: p_T calibration

- Alignment completed: can measure x_L
- Cannot yet measure the transverse momentum of scattered proton since direction of incoming proton beam unknown
- Use again elastic production of ρ^0 , at Q²=0:

- Q²=0: scattering angle of electron=0, ie p_T(electron) =0
- Transverse momentum of proton balanced by transverse momentum of pions (measured in central detector)

Determine incoming proton beam direction

Determine direction of incoming proton beam: p_T calibration

 ρ^0 photoproduction at Q²~0

 $\mathbf{p}_{\mathbf{x}}(\mathbf{LPS}) + \mathbf{p}_{\mathbf{x}}(\rho) = 0$ $\mathbf{p}_{\mathbf{y}}(\mathbf{LPS}) + \mathbf{p}_{\mathbf{y}}(\rho) = 0$

 $\longrightarrow \pi^+\pi^-$

 $e p \rightarrow e \rho^0 p$

The ρ^0 transverse momentum balances the transverse momentum of the scattered proton (with respect to the beam)

Spread determined by the beam emittance:
 40 MeV in horizontal plane and 100 MeV in vertical plane

Calibration done for every proton fill

Systematic checks

- Check residuals vs run number
- Position and width of the x_L=1 peak -- stability vs run number
- χ^2 independent of x_L and p_T
- Check position of the beam pipe apertures

• ...

Stability vs run number

All residuals are checked on a run-by-run basis to assure the stability of the alignment

Line: run mean y_{vtx} measured with central detector

Beam-pipe apertures

Position of beam pipe apertures is cross-checked using reconstructed tracks

D

(b)

The resulting x_L distributions

x_L resolution:

$$\frac{\sigma(\mathbf{x}_{\mathrm{L}})}{\mathbf{x}_{\mathrm{L}}}(\mathbf{S4},\mathbf{S5},\mathbf{S6}) \approx 0.4\%$$

$$\frac{\sigma(\mathbf{x}_{\mathrm{L}})}{\mathbf{x}_{\mathrm{L}}}(\$1,\$2,\$3) \approx 2\%$$

Conclusions

- Alignment of LPS was the most difficult, time-consuming and tedious part of the analysis. Not a job for a student.
- Critical to have a reaction which produced plenty of nearly monochromatic protons with a priori known trajectory in the LPS
- Survey results useless
- HERA Beam Position Monitors also useless for alignment
 but very good to monitor relative changes of beam orbit
- It pays to have data-taking conditions as stable as possible: detectors always in the same position, stable beam tilt etc