Alignment of the VFPS.

Through elastic ρ production at the central detector and through the kinematic peak method.

Master thesis at the University of Antwerp Kim.Vervink@epfl.ch

Kim Vervink

<u>Contents</u>

- Introduction
- VFPS detector
- Two main alignment principles used for the VFPS:
- Elastic production of ρ mesons in the central detector
- Kinematic peak method
- Conclusions

The Very Forward Proton Spectometer

- 220 m after the interaction point of H1(in the arch of HERA)
- Measures diffractively scattered proton (use HERA bend)
- Mechanical gear provides 2 movable horizontal Roman Pot stations to approach the scattered proton beam.
- Roman Pots retracted during injection and beam dumb
- Moved in as close as possible to the proton beam during stable beam conditions

Status of the VFPS: - Installation 2003 - Tests 2004

- Due to problems in the readout fibres: no real data available (everything presented here is based on simulations) Kim Vervink 4

Detector Design

VFPS is a **Tracking Detector**: Each Roman Pot station has 2 planes of scintillating fibers perpendicular to the beam line One in the u-orientation one in the v-

orientation

=> 4 coordinates of impact points

measured

1 plane = 5 **layers** of 120 scintillating **fibres** → Resolution 100 micron

Signals become amplified by **Photo Multiplicators.**

Goal: reconstruct diffractive kinematics: xpom (=1-Ep'/Ep); θx,_{κin}y_{Vervink}

Calibration: I

Changes in beam position during one lumi-run
 →Relative position
 →Measured by Beam Position Monitors

- Changes in position of Roman Pots (aproaching the beam) very well known.
- Positioning of VFPS detectors w.r.t. nominal proton beam
 - → Absolute position
 - → Time-dependent calibration / run

Calibration: II

→Minimization procedure between a measured variable (dependent of position) and "true" values: $(r^{exp} - r^{true})^2$

$$\chi^{2} = \sum_{events} \left(\sum_{variables} \frac{(x_{i}^{exp} - x_{i}^{uac})^{2}}{\sigma_{x_{i}}^{2}} \right)$$

Parameters of minimization: the position offsets. Get as **fast as possible** a minimum in χ^2 by having lots of **statistics** or a low **sigma** value.

Suppress background:

Background introduced by simular looking processes. Selection on tracks has no effect.

Selection on energy \rightarrow cluster without track

Selection on **reconstructed mass** \rightarrow use difference of mass of mother particles.

<u>Control: invariant p mass</u>

Compare distribution of data + cuts with simulation of the different (p and BG) contributions

→Selected data need to look simular to ρ contribution => ok

Resolutions on ρ (~p): $p_x^{\rho} = p_y^{\rho} = 300 \text{ MeV};$ $p_z^{\rho} = 900 \text{ MeV}; \text{ E}^{\rho} = 1 \text{ GeV}$

Use this information for calibration.

- **Compare** kinematic variables from p' (H1) with the ones measured by VFPS
- Properties: low statistics ☺, high precision ☺
 → Cross check method

$$\chi^{2} = \sum_{events} \frac{\left(\vartheta_{x}^{\rho} - \vartheta_{x}^{VFPS}\right)^{2}}{\sigma_{\vartheta_{x}}^{2}} + \frac{\left(\vartheta_{y}^{\rho} - \vartheta_{y}^{VFPS}\right)^{2}}{\sigma_{\vartheta_{y}}^{2}} + \frac{\left(xpom^{\rho} - xpom^{VFPS}\right)^{2}}{\sigma_{xpom}^{2}}$$

Results of the calibration.

Place VFPS on a wrong offset → does it find back the position with the correct alignment? After a few iterations in the minimization procedure.

χ^2 minimum in function of offset.

Kim Ve

Resolution of glassfibers ≈ 100 micron

Results (all in micron)

	gene	reco
$\delta x_1 \pm \sigma(\delta x_1)$	20 ± 27	120 ± 87
$\delta y_1 \pm \sigma(\delta y_1)$	-15 ± 13	-20 ± 63
$\delta x_2 \pm \sigma(\delta x_2)$	20 ± 26	150 ± 85
$\delta y_2 \pm \sigma(\delta y_2)$	-100 ± 68	400 ± 257

Calibration of the VFPS through kinematic peak method.

Principle: VFPS measures $|t| 0 \rightarrow 0.25$ $|t|=(p-p')^2 = -2p^2(1-\cos\theta)$

$$\frac{d\sigma}{dt} = \frac{1}{x_p} e^{-bt}$$

 →θ: distributed around 0°
 Misalignment => θ distribution won't peak anymore at 0°!

$$\chi^{2} = \frac{\theta_{x}^{2}}{\sigma_{\theta_{x}}^{2}} + \frac{\theta_{y}^{2}}{\sigma_{\theta_{y}}^{2}} + \frac{\left(x_{P} - x_{P}^{H1}\right)^{2}}{\sigma_{\left(x_{P} - x_{P}^{H1}\right)}^{2}}$$

Properties: high statistic ☺, large sigma ⊗

∠∎ 1000

800

600

400

200 - no shift

-0.5

 $\theta 0 \ \mu m$ offset

0

Kim Vervink

0.5

 ϑ_x^{rec} (mrad)

events

Alignment possible up to the same order of the resolution of the detector.

Lots of events needed to compensate large sigma \rightarrow time consuming.

Kim Vervink

<u>Conclusion</u>

- Beam Position Monitors not enough to calibrate!!
- **Kinematic peak** calibration method will be used to align VFPS within one lumi-run but the **elastic** ρ production method will be a useful **cross check**.
- Both methods have a calibration resolution less than 100 micron (= resolution of scintillating fibres)