Alignment of the VFPS.

(1ii)

Through elastic ρ production at the central detector and through the kinematic peak method.

Master thesis at the University of Antwerp Kim.Vervink@epfl.ch

Contents

- Introduction
- VFPS detector
- Two main alignment principles used for the VFPS:
- Elastic production of ρ mesons in the central detector
- Kinematic peak method
- Conclusions

Outline: HERA with H1 and VFPS.

VFPS:
 Roman Pot

 movable device i.o. to approach the diffracted proton beam.

The Very Forward Proton Spectometer

- 220 m after the interaction point of H 1 (in the arch of HERA)
- Measures diffractively scattered proton (use HERA bend)
- Mechanical gear provides 2 movable horizontal Roman Pot stations to approach the scattered proton beam.
- Roman Pots retracted during injection and beam dumb
- Moved in as close as possible to the proton beam during stable beam conditions

Status of the VFPS:

- Installation 2003
- Tests 2004
- Due to problems in the readout fibres: no real data available (everything presented here is based on simulations)

Detector Design

VFPS is a Tracking Detector:
Each Roman Pot station has 2 planes of scintillating fibers perpendicular to the beam line
One in the u-orientation one in the v orientation
=> 4 coordinates of impact points measured
1 plane $=5$ layers of 120 scintillating fibres \Rightarrow Resolution 100 micron

Signals become amplified by Photo Multiplicators.

Goal: reconstruct diffractive kinematics:

$$
\text { xpom (=1-Ep'/Ep); } \quad \text { x: kinirlvervink }
$$

$\xrightarrow{\text { Beam }}$ \longrightarrow ?

1.7 mm

Trajectory simulation.

Calibration: I

- Changes in beam position during one lumi-run
\rightarrow Relative position
- Measured by Beam Position Monitors
- Changes in position of Roman Pots (aproaching the beam) very well known.
- Positioning of VFPS detectors w.r.t. nominal proton beam
\Rightarrow Absolute position
\Rightarrow Time-dependent calibration / run

Calibration: II

\rightarrow Minimization procedure between a measured variable (dependent of position) and "true" values:

$$
\chi^{2}=\sum_{\text {events }}\left(\sum_{v a \mathrm{riables}} \frac{\left(x_{i}^{\exp }-x_{i}^{\text {true }}\right)^{2}}{\sigma_{x_{i}}^{2}}\right)
$$

Parameters of minimization: the position offsets.
Get as fast as possible a minimum in χ^{2} by having lots of statistics or a low sigma value.

Calibration VFPS through elastic production of ρ mesons in H1

- Principle: look at a clean and precise measurable proces in central detector:

$$
e+p->e^{\prime}+p^{\prime}+p
$$

$\rho \rightarrow \pi^{+} \pi^{-}$

Suppress background:

Background introduced by simular looking processes. Selection on tracks has no effect.

$\rho \rightarrow \pi^{+} \pi^{-}$
$\omega \rightarrow>\pi^{-} \pi^{+} \pi^{0}$
$\phi \rightarrow K^{-} K^{+}$

Selection on energy \rightarrow cluster without track
Selection on reconstructed mass \rightarrow use difference of mass of mother particles.

Control: invariant ρ mass

Compare distribution

 of data + cuts with simulation of the different (ρ and BG) contributions\Rightarrow Selected data need to look simular to ρ contribution
=> ok

Resolutions on $\rho(\sim p)$:
$p_{x}{ }^{\rho}=p_{y}{ }^{\rho}=300 \mathrm{MeV}$;
$p_{z}{ }^{\rho}=900 \mathrm{MeV} ; \mathrm{E}^{\mathrm{p}}=1 \mathrm{GeV}$

Kim Vervink

Use this information for calibration.

- Compare kinematic variables from p' (H1) with the ones measured by VFPS
- Properties: low statistics ()$^{\text {, high precision })}$)
\rightarrow Cross check method

$$
\chi^{2}=\sum_{\text {events }} \frac{\left(\vartheta_{x}^{\rho}-\vartheta_{x}^{\text {VFPS }}\right)^{2}}{\sigma_{\vartheta_{x}}^{2}}+\frac{\left(\vartheta_{y}^{\rho}-\vartheta_{y}^{\text {VFPS }}\right)^{2}}{\sigma_{\vartheta_{y}}^{2}}+\frac{\left(\text { xpom }^{\rho}-\text { xpom }^{\text {VFPS }}\right)^{2}}{\sigma_{x p o m}^{2}}
$$

Results of the calibration.

Place VFPS on a wrong offset \Rightarrow does
it find back the
position with the correct alignment?
After a few
iterations in the
minimization
procedure.

Kim Vervink

χ^{2} minimum in function of offset. (iiin

Resolution of
glassfibers ≈ 100 micron
Results (all in micron)

	gene	reco
$\delta x_{1} \pm \sigma\left(\delta x_{1}\right)$	20 ± 27	120 ± 87
$\delta y_{1} \pm \sigma\left(\delta y_{1}\right)$	-15 ± 13	-20 ± 63
$\delta x_{2} \pm \sigma\left(\delta x_{2}\right)$	20 ± 26	150 ± 85
$\delta y_{2} \pm \sigma\left(\delta y_{2}\right)$	$-100 \pm$	400 ± 257
68		

Calibration of the VFPS through

 kinematic peak method.Principle: VFPS measures $|t| 0 \rightarrow 0.25$
$|t|=\left(p-p^{\prime}\right)^{2}=-2 p^{2}(1-\cos \theta)$
$\Rightarrow \theta$: distributed around 0°

$$
\frac{d \sigma}{d t}=\frac{1}{x_{p}} e^{-b t}
$$

Misalignment $=>\theta$ distribution won't peak anymore at 0 !

$\chi^{2}=\frac{\theta_{x}^{2}}{\sigma_{\theta_{x}}^{2}}+\frac{\theta_{y}^{2}}{\sigma_{\theta_{y}}^{2}}+\frac{\left(x_{P}-x_{P}^{H 1}\right)^{2}}{\sigma_{\left(x_{P}-x_{P}^{H 1}\right)}^{2}}$
Properties: high statistic © large sigma $*$

Results...

(iil)
Difference from perfect value

Alignment possible up to the same order of the resolution of the detector.

Lots of events needed to compensate large sigma \Rightarrow time consuming.

Conclusion

- Beam Position Monitors not enough to calibrate!!
- Kinematic peak calibration method will be used to align VFPS within one lumi-run but the elastic ρ production method will be a useful cross check.
- Both methods have a calibration resolution less than 100 micron (= resolution of scintillating fibres)

