The ATLAS Luminosity System
Per Grafstrom
CERN

On behalf of the ATLAS
Luminosity \&Forward Detector WG

To encourage and stimulate transfer of knowledge between the HERA and LHC communities and establish an ongoing interaction.

Luminosity Measurement - WHY ?

\square Cross sections for "Standard " processes

- t-tbar production
- W/Z production
\qquad

Theoretically known to better than 10\%will improve in the future
\square New physics manifesting in deviation of $\sigma \times B R$ relative the Standard Model predictions

- Important precision measurements
- Higgs production $\sigma \times B R$
- $\tan \beta$ measurement for MSSM Higgs
\qquad

Luminosity Measurement - WHY ? (cont.)

Examples

Higgs coupling

Relative precision on the measurement of $\sigma_{H} \times \mathrm{BR}$ for various channels, as function of m_{H}, at $\int \mathrm{L} d t=300 \mathrm{fb}^{-1}$. The dominant uncertainty is from Luminosity: 10% (open symbols), 5% (solid symbols).
(ATLAS-TDR-15, May 1999)
$\tan \beta$ measurement

Systematic error dominated by luminosity (ATLAS Physics TDR)

Luminosity Measurement Options

- Relative luminosity a DEDICATED luminosity monitor is needed LUCIDAbsolute luminosity
- Goal:
- measure L with $\leqslant 2-3 \%$ accuracy
- How:
- LHC Machine parameters
- Use ZDC in heavy ion runs to understand machine parameters
- rates of well-calculable processes: e.g. QED, QCD
- optical theorem: forward elastic rate + total inelastic rate: Use Roman Pots
- needs \sim full $|\eta|$ coverage-ATLAS coverage limited
- Use $\sigma_{\text {tot }}$ measured by others (TOTEM)
- Combine machine luminosity with optical theorem
- luminosity from Coulomb Scattering

Use Roman Pots

ATLAS pursuing all options

L from LHC Machine Parameters

Luminosity depends exclusively on beam parameters:

$$
\begin{aligned}
& \mathrm{L}=\frac{f \sum_{i=1, \ldots 808} N_{1 i} N_{2 i}}{\text { Area of intersection } 1,2} \leq \frac{f \sum_{i=1, \ldots 808} N_{1 i} N_{2 i}}{4 \pi \sigma_{x} \sigma_{y}}=\frac{f k_{b} N^{2}}{4 \pi \varepsilon_{N} \beta^{*} / \gamma} \\
& N_{a i}=\text { \#protons in bunch } i \text { of beam } a ; \quad f=\text { revolution frequency }=c / 26659 \mathrm{~m}, k_{b}=\# \text { bunches } \\
& \beta^{*}=\beta \text {-function at IP; } \quad \varepsilon_{N}=\sigma_{x}^{*} \sigma_{y}^{*} \gamma / \beta^{*} \text { normalized transverse emittance; } \quad \gamma=E / m_{p}(\sim 7460)
\end{aligned}
$$

- Luminosity accuracy limited by:
- extrapolation of $\sigma_{x} \sigma_{y}\left(\operatorname{or} \varepsilon_{1} \beta_{x}^{*}, \beta_{y}{ }^{*}\right)$ from measurements of beam profiles elsewhere to IP; knowledge of optics, ...
- Precision in the measurement of the the bunch current
- beam-beam effects at IP, effect of crossing angle at IP, ...

Use ZDC in heavy ion runs to calibrate machine instrumentation (Sebastian White)

Calculated cross sections for $\mathrm{PbPb} @ \mathrm{LHC}$
A.J.Baltz, C.Chasman and SNW NIM A417(1998)p. 1
(errors can be inferred from above RHIC discussion)

$\sigma_{1 \mathrm{n}, \mathrm{ln}}$	0.537 barns
$\sigma_{1 \mathrm{n}, \mathrm{xn}}$	1.897
$\sigma_{\mathrm{xn}, \mathrm{xn}}$	14.75
σ_{xn}	227.3

Weizsäcker-Williams (WW) method

$$
\mathcal{L}=B \frac{N_{p} N_{\bar{p}}}{4 \pi \sigma_{x} \sigma_{y}} f
$$

$N_{\mathrm{p}}=$ total current in a "bunch"
$\sigma_{\mathrm{x}, \mathrm{y}}=$ transverse dimensions of the bunches
Above methodologies developed to check the instrumentation which measures these parameters.
This calibration is essentially independent of the beam species.

Luminosity from other Physics Signals

QED: pp $\rightarrow\left(\mathbf{p}+\gamma^{*}\right)+\left(\mathbf{p}+\gamma^{*}\right) \rightarrow \mathbf{p}+(\mu-\mu+)+\mathbf{p}$

- signal: $(\mu \mu)$-pair with $|\eta(\mu)|<2.5, \mathrm{p}_{\mathrm{T}}(\mu) \geqslant 5-6 \mathrm{GeV}, \mathrm{p}_{\mathrm{T}}(\mu \mu) \simeq 0$
- small rate $\sim 1 \mathrm{pb}\left(\sim 0.01 \mathrm{~Hz}\right.$ at $\left.\mathrm{L}=10^{34}\right)$
- clean: backgrounds from DY, b, c- decays can be handled by appropriate offline cuts
- uncertainties: μ trigger acceptance \& efficiency, ...
- (A.Shamov \& V.Telnov, hep-ex/0207095)

QCD: W/Z \rightarrow leptons

- high rate: $\mathrm{W} \rightarrow \ell v: \sim 60 \mathrm{~Hz}$ at $\mathrm{L}=10^{34}$ ($\varepsilon=20 \%$)
- current "theory" systematics: PDF and parton cross sections $\approx 4 \%$
- gives relevant parton luminosity directly...
- detection systematics:
- trigger/acceptance/identification efficiency/ backgrounds
- detailed study for ATLAS detector needed

Both processes will be used

ATLAS Forward
 Detectors for Luminosity Measurement and Monitoring

ATLAS Collaboration

Letter of Intent

The ATLAS Detector

Extension of ATLAS- A two stage process

- Short time scale

Forward detector for Luminosity measurement Elastic scattering in the Coulomb region

- Longer time scale

Gain experience in working close to the beam
\Rightarrow propose a diffractive physics program using additional detectors

Elastic scattering in the Coulomb region

$$
\left.\frac{d N}{d t}\right|_{t \approx 0}=L \pi\left|f_{C}+f_{N}\right|^{2} \approx L \pi\left|-\frac{2 a_{E M}}{|t|}+\frac{\sigma_{t o t}}{4 \pi}(i+\rho) e^{-b t / 2}\right|^{2}
$$

From the fit we will get
$\sigma_{\text {tot }}, \rho, b$ and L

The total cross section

The ρ parameter

$\square \rho=\operatorname{Re} F(0) / \operatorname{Im} F(0)$ linked to the total cross section via dispersion relations
$\square \rho$ is sensitive to the total cross section beyond the energy at which ρ is measured \Rightarrow predictions of $\sigma_{\text {tot }}$ beyond LHC energies is possible
\square Inversely :Are dispersion relations still valid at LHC energies?

The b-parameter or the forward peak

\square The b-parameter for It $\mathrm{l}<.1 \mathrm{GeV}^{2}$

■ "Old" language : shrinkage of the forward peak
$b(s) \propto 2 \alpha^{\prime} \log s ; \alpha^{\prime}$ the slope of the Pomeron trajectory ; $\alpha^{\prime} \approx 0.25 \mathrm{GeV}^{2}$

- Not simple exponential - t-dependence of local slope
\square Structure of small oscillations?

What else can we do?

Coulomb region extremely challenging. All aspects of design optimized for this.

\square Medium (0.1-1.0 GeV**2) elastic scattering needs medium beta* optics, low Lumi, short runs)
Large t (1-10 GeV**2) elastic scattering needs high Lumi, standard optics, and continuous runs.
Studies needed
\square Proton tagging to identify a diffractive interaction must be possible at some level. BUT t and ξ acceptance and t and ξ resolution need to be understood.
Simulation and optics investigations needed to see if there is any physics reach for single and central diffraction using proton tagging. Signal and background rates have to be studied. Trigger set up?
Many open questions

Requirements to reach the Coulomb region

- Required reach in t :

$$
t_{\text {min }} \leq-t\left(\left|f_{C}\right|=\left|f_{N}\right|\right) \approx \frac{8 \pi a}{\sigma_{T O T}} \approx 6 \times 10^{-4} \mathrm{GeV}^{2} \rightarrow \vartheta_{\min } \leq 3.5 \mu \mathrm{rad}
$$

- Requires:
- small intrinsic beam angular spread at IP
- insensitive to transverse vertex smearing
- large effective lever arm $L_{\text {eff }}$

Parallel-to-point focusing

- detectors close to the beam, at large distance from IP

Experimental Technique

\square Independence of vertex position:

$$
y_{\mathrm{det}}=\sqrt{\beta \beta^{*}} \vartheta_{y}^{*}=L_{e f f, y} \vartheta_{y}^{*}
$$

\square Limit on minimum $|t|_{\text {min }}$:

$$
\left.\begin{array}{l}
\vartheta_{\min }^{*}=\frac{d_{\min }}{L_{e f f, y}} \\
t_{\min }=\left(\nu_{\min }^{*} P_{\text {beam }}\right)^{2}
\end{array}\right\} \xrightarrow{d_{\min }=n_{\sigma} \sigma_{y}=n_{\sigma} \sqrt{\beta \varepsilon_{N} / \gamma}}
$$

The main potential difficulties are all derived from the above

- $\boldsymbol{L}_{\text {eff }, \boldsymbol{y}}$ large \rightarrow detectors must be far away form the IP \rightarrow potential interference with machine hardware
- small $\mathbf{t}_{\text {min }} \Rightarrow$
- β^{*} large \rightarrow special optics
- small emittance
- small $\mathbf{n}_{\mathbf{\sigma}} \rightarrow$ halo under control and the detector must be close to the beam

Roman Pot Locations

One Roman Pot Station per side on left and right from IP1

Each RP station consists of two Roman Pot Units separated by 3.4 m , centered at 240.0 m from IP1

Requirements for Roman Pot Detectors

- "Dead space" d_{0} at detector's edge near the beam :
$\underline{d_{0}} \leq \mathbf{1 0 0} \mu \mathrm{m}$ (full/flat efficiency away from edge)
\square Detector resolution: $\underline{\sigma}_{d}=\mathbf{3 0} \mu \mathrm{m}$
- Same $\underline{\sigma}_{d}=\mathbf{1 0} \mu \mathrm{m}$ relative position accuracy between opposite detectors (e.g. partially overlapping detectors, ...)
- Radiation hardness: $100 \mathrm{~Gy} / \mathbf{y r}$
- Operate with the induced EM pulse from circulating bunches (shielding, ...)
\square Rate capability: $\mathbf{O}(\mathrm{MHz})(40 \mathrm{MHz})$; time resolution $\sigma_{\mathrm{t}}=\mathbf{O}(1 \mathrm{~ns})$
- Readout and trigger compatible with the experiment DAQ
- Other:
- simplicity, cost
- extent of R\&D needed, time scale, manpower, ...
- issues of LHC safety and controls

Roman Pot Detectors

- Square scintillating fibers

■ Kuraray $0.5 \mathrm{~mm} \times 0.5 \mathrm{~mm}$ fibers

- 10 layers per coordinate
- $50 \mu \mathrm{~m}$ offset between layers
\square Main reason for choice
- Small dead space
- EM parasites not a problem

Scint. fiber detector

$N_{p e}=\left\langle\frac{d E}{d x}\right\rangle \cdot d_{\text {fiber }} \cdot \frac{d N_{\gamma}}{d E} \cdot \varepsilon_{A} \cdot \varepsilon_{T} \cdot \varepsilon_{C} \cdot g_{R} \cdot \varepsilon_{Q} \cdot \varepsilon_{d}$
expect $\mathrm{N}_{\mathrm{pe}} /$ hit ~ 4.9
empirically: ~ 3 is more likely

Table 5-2 Summary of the performance figures of the baseline configuration.

detection efficiency per fiber	average number of hit fibers	COG method	overlap method
	9.1	19.9	17.2
85%	8.2	25.4	20.6

Detector Performance Simulations

First simulation results

\square strip positioning $\sigma_{\text {fiber }} \approx 20 \mu \mathrm{~m}$
\square light and photo-electron yield:

$$
N_{p e}=\langle d E / d X\rangle d_{\text {fiber }}\left(d n_{\mathrm{V}} / d E\right) \varepsilon_{\mathrm{A}} \varepsilon_{T} \varepsilon_{\mathrm{C}} g_{\mathrm{R}} \varepsilon_{\mathrm{Q}} \varepsilon_{\mathrm{d}}
$$

		Baseline detector SCSF-38 ($\lambda=428 \mathrm{~nm})$ 0.5 mm square MAPMT	Alternative configuration SCSF-3HF $(\lambda=530 \mathrm{~nm})$ 0.5 mm square GM-APD
$<\mathrm{dE} / \mathrm{dx}>$	specific energy loss of a MIP in scintillator	$200 \mathrm{keV} / \mathrm{mm}$	$200 \mathrm{keV} / \mathrm{mm}$
$\mathrm{d}_{\text {fiber }}$	active thickness of fiber	0.48 mm	0.48 mm
$\mathrm{dn}_{\gamma} / \mathrm{dE}$	scintillation light yield	$8.3 / \mathrm{keV}$	$8.3 / \mathrm{keV}$
ε_{A}	geometrical acceptance	0.042	0.042
ε_{T}	attenuation in fiber	0.85	0.85
ε_{C}	coupling efficiency fiber/photodetector	0.80	0.80
$\mathrm{~g}_{\mathrm{R}}$	Gain due to reflection from rear end	1.4	1.4
$\varepsilon_{\mathbf{Q}}$	quantum efficiency photodetector	$\mathbf{0 . 1 8}$	$\mathbf{0 . 1 5 (\mathbf { 0 . 3 } \text { in future ?) }}$
ε_{d}	detection efficiency (electronics/DAQ)	0.85	0.85
$\mathbf{N}_{\mathbf{p e}}$	Photoelectron yield	$\mathbf{4 . 9}$	$\mathbf{4 (8) ~ i n ~ f u t u r e ~ ?) ~}$

Fiber housing components

Hamamatsu H 7546 B photomultiplier POM case removed over 1 cm

PTFE spacers. Thickness adjusted to compensate PMs misalignments

Fiber routing

Radius of curvature min 30 mm
Average fiber length $\sim 230 \mathrm{~mm}$
Nb of fibers in X config.: $71 \times 10 \times 2=1420$
Total fiber length: $\sim 330 \mathrm{~m}$

Square holes filled with glue (to be tested in prototype)

Simulated Elastic Scattering

Inner ring: $t=-0.0007 \mathrm{GeV}^{2}$
Outer ring: $t=-0.0010 \mathrm{GeV}^{2}$

- Reconstruct θ^{*} :

$$
\begin{aligned}
\theta^{*} & =\sqrt{{\overline{\theta_{x}}}^{2}+{\overline{\theta_{y}}}^{2}} \\
& =\sqrt{\left(\frac{\bar{x}}{L_{e f f, x}}\right)^{2}+\left(\frac{\bar{y}}{L_{e f f, y}}\right)^{2}}
\end{aligned}
$$

Simulated $\mathrm{dN}_{\mathrm{e}} / \mathrm{dt}$ and simple fit

Event generation:

- 5 M events generated corresponding to $\sim 90 \mathrm{hr}$ at $\mathrm{L} \approx 10^{27} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- NO systematics on beam optics!
- Only 1 Roman Put unit/arm

Simple fit

- range for fitting:
- $0.00056<|t|<0.030 \mathrm{GeV}^{2}$
- $~ 4 \mathrm{M}$ events "measured" for $\mathrm{dN} / \mathrm{dt}$

Relative Luminosity
 The LUCID Luminosity Monitor

("LUminosity measurement using Cerenkov Integrating Detector")
A bundle of 200 (per end) projective Al Cerenkov tubes around the beam pipe

Cerenkov radiator gas $\mathrm{C}_{4} \mathrm{~F}_{10}$

Layer 3

Layer 4

Layer 5

Front view ($\mathrm{Z}=16976 \mathrm{~mm}$)

SERVICES
5 layers
40 tubes
7 fibres
1400 fibres (minimum)

2 Gas pipes
2 LED cables or 200 fibres

Where is LUCID Deployed?

Front face of each LUCID end is $\sim 17 \mathrm{~m}$ from the IP

LUCID Technique - tested at CDF

- Sensitive to right particles -- Much more light from primary particles than secondaries \& soft particles:
- Much shorter paths for secondaries
- Cerenkov thresholds
- No Landau fluctuations for Cerenkov Light emission... a narrow single particle peak
- Excellent amplitude resolution - we can count multiple tracks/tube
- No saturation even at highest lumi
- Linear relationship between lumi \& tracks counted in CLC
- 200 tubes/end give position sensitivity
- Time resolution (~ 140 ps @ CDF)
- We can "follow bunches".
- Radiation hard (all aluminium) -it can fit in available space \& has low mass (40kg per end)

LUCID - Dynamic Range \& Calibration

LUCID can monitor luminosity over the full range expected at the $\mathrm{LHC}\left(10^{27} \rightarrow 10^{34}\right) \Rightarrow$ interactions / bunch $\Rightarrow \sim 2 \times 10^{-4} \sim 20$ (a factor of 10^{5})

- Required dynamic range of the LUCID detector up to ~ 30 tracks ($\sim 1.7 \times 20$).
- The detector can also be run "independently" in order to asses: 1) beam background conditions, 2) beam quality \& beam position
- The LUCID detector exploits the expected linear dependence between \# reconstructed particles and \# pp interactions (min. bias) to full lumi.

CALIBRATION

Calibration can be carried from elastic scattering data over the full dynamic range
-The cross calibration of LUCID will take place at $10^{27} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$. A collision rate of $100 \mathrm{~Hz} @ 100 \mathrm{mb}$ xsec $\rightarrow 170 \mathrm{~Hz}$ tracks per end of LUCID (cf: elastic rate in the RP of 30 Hz)

Simulation of LUCID

- A 20 GeV muon incident along the axis of a LUCID Cerenkov tube gives ~ 320 photons and ~ 230 photons are collected at the Winston cone exit.
- Only 60 photons enter the fibre acceptance and reach the end of a 10 m quartz fibre, needed to transmit light from LUCID to remote photo-detectors.
- We would expect ~ 12 pe's/track with a PMT and $\sim 30-40$ pe's/track with an APD readout.
\square A simple simulation of a beampipe has been included.
- Future full LUCID simulations development include:
- A full description of LUCID, including gas-vessel and support structure and final fibre length estimates
- Complete simulation of background conditions at the LUCID position
- A full simulation of the LUCID prototype is now underway

Reading out LUCID

LUCID Mock Up for the Study of Readout Routing, Space Allocation \& Integration

The Cosmic Ray \rightarrow Beam Test

\square Cosmic ray trigger rate is ~ 1 /hour - consistent with our MC estimate. We are waiting for` statistics to build up.
\square We really need access to testbeam (e, g with $\mathrm{E}_{\mu}>2.2 \mathrm{GeV}$)
\square We are planning a beamtest at Fermilab in Spring 2005.

First Version of the LUCID - Mechanical Design Report

\square This document was finished on the $18^{\text {th }}$ of October 2004

- The design report details the:
- Space allocation for LUCID
- Pattern of Cerenkov light-collecting tubes
- Design of Winston cones
- LUCID gas volume
- Front bulkhead
- Rear bulkhead
- Optical fibre feed-throughs
- Optical bundle tips
- Gas connections
- Weight of various LUCID elements
- Assembly procedure
- Cost estimate
- Remaining task list

Sample Pictures from the Report

LbGIDPIeptiqalkforereadout

Detector Assembly (1)

Detector Assembly (2)

Initial Cost Estimate For LUCID Detector (NOT including readout)

Total machining hours 2410

- Total machining cost @ \$5/hr = \$12,050 (CDN)
- Material cost \$56,295 (CDN)
- LUCID assembly hours 1120
- Assembly cost @ \$5/hr = \$5,600 (CDN)

Cost of tooling, jigs \& tool sharpening = \$5,000 (CDN)

- TOTAL Cost of the two LUCID assemblies = 79,000
\square Obviously we expect this to increase, but it sets the scale at $\sim 100,000 \mathrm{CHF}$.

Readout Issues To be Studied

\square The radiation at the junction box is nominally a few Gry/year. Even if this a factor of 10 wrong we have the freedom to move away from quartz fibre in this region and connect at the junction box, to:

- UV transparent plastic fibre which is much cheaper
- WLS + regular clear plastic fibre - even cheaper and would reduce the need for PMTs with UV transparent windows.
- We still need to test various photodetector options that would depend on the readout method chosen (quartz fibre, UV transmitting plastic fibre, WLS + plastic fibre):
- APD's, Si-PMTs
- PMTs with UV sensitivity
- Multi-anode PMTs with or without UV sensitivity.
\square Readout electronics - which of course depends on point (2) above.

Milestones this Year \& the Future

- Milestones in 2004 year
- March 2004 - the LOI.
- May 2004 - LUCID report : "favourably received" by the LHCC
- Engeering Change Report (ECR) for the LHC - in progress
- Beam test of 6-tube prototype in Spring/Summer 2005 at FERMILAB, testing:
- Direct PMT readout
- Readout via quartz fibre
- Institute ECR (during 2005)
- Use model to LUCID mounting and readout details (early 2005)
- Finish detailed simulation including the effect of background from quartz readout fibres (by spring 2005)
- Prototype readout and readout electronics
- Build LUCID!
- CAVEAT- Money and help required

Conclusion

\square ATLAS pursues a number of options for Absolute Luminosity Measurement

- Coulomb normalization
- W/Z rates
- production of muon pairs via double photon exchange
- elastic slope extrapolated to $d N /\left.d t\right|_{t=0}$ plus machine L
- elastic slope extrapolated to $d N / d t_{t=0}$ plus $\sigma_{\text {tot }}$ from TOTEM
\square machine parameters alone
- Cross calibration from ZDC in Ion runs
- others...
\square The Coulomb Interference measurement is very challenging but seems within reach.
- Small angle elastic scattering will address "old fashion" physics in terms of $\sigma_{\text {tot }}, \rho$ and \mathbf{b}
- This experience of working close to the beam will prepare us for a Forward Physics Program with ATLAS in a possible future upgrade

Back up slides

Summary on emittance and beam halo issues

"Looks feasible but no guarantees can be given"

However, if we don't reach the Coulomb region the effort is not in vain
we can still:
\square Use $\sigma_{\text {tot }}$ as measured by TOTEM/CMS and get the luminosity by measuring elastic scattering in a moderate t -range($-\mathrm{t}=0.01 \mathrm{GeV}^{2}$) and use the Optical theorem for the rest
\square Use the luminosity measured by machine parameters and again via the Optical theorem get $\sigma_{\text {tot }}$ and all other cross sections relative to $\sigma_{\text {tot }}$ with a factor 2 better precision than from the machine parameters

Luminosity transfer $10^{27}-10^{34} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}$

- Bunch to bunch resolution \Rightarrow we can consider luminosity / bunch
$\Rightarrow \sim 2 \times 10^{-4}$ interactions per bunch to 20 interactions/bunch
\Downarrow
- Required dynamic range of the detector ~ 20
- Required background \ll 2×10^{-4} interactions per bunch
- main background from beam-gas interactions
- Dynamic vacuum difficult to estimate but at low luminosity we will be close to the static vacuum.
- Assume static vacuum \Rightarrow beam gas $\sim 10^{-7}$ interactions /bunch/m
- We are in the process to perform MC calculation to see how much of this will affect LUCID

Alternative photodetectors

- Geiger Mode Avalanche Photodiodes
+ high gain, $\sim 10^{6} \quad-$ low $\mathrm{QE} \sim 15 \%$ (geometrically limited)
+ low bias voltage $\sim 50 \mathrm{~V}$
+ very fast signal characteristics
+ very simple electronics
+ small size

GM-APD would become interesting if geometrical QE limitation can be overcome.
$\mathrm{QE}>30 \%$ is claimed to be in reach.

This would mean $\mathrm{N}_{\mathrm{pe}} \sim 6-8$ for our baseline configuration.

Cost Estimates \& Participants

	Item	Cost (KCHF)
듬	Cerenkov tubes	68.0
	Quartz fibers	62.0
	Readout	62.0
	Infrastructure	125.0
	R\&D	62.0
	Total	379.0
2003000000000	RP units	220.0
	Q4 polarity inverters	60.0
	Scintillating fiber detectors	175.0
	Readout	650.0
	Integration	75.0
	R\&D	100.0
	Total	1280.0

Participating institutes:

(as a subsystem, fully part of the ATLAS collaboration)

University of Alberta CERN
Ecole Polytechnique
Institute of Physics Academy of Science, Czech Republic
University of Manchester
University of Montreal
University of Texas
University of Valencia
SUNY Stony Brook

