Exclusive DPE Higgs generators in fast CMS simulation

Marek Taševský (Univ.Inst. Antwerp) HERA-LHC meeting - CERN 19/01 2005

1. Comparison of DPEMC, ExHuMe and EDDE at parton, hadron and detector levels

2. Event yields for H->bb and H->WW

The TOTEM Experiment

TOTEM physics program: total pp, elastic & diffractive cross sections Apparatus: Inelastic Detectors & Roman Pots (3 stations)

High β^* (1540m): Lumi 10²⁸-10³¹cm⁻²s⁻¹ (few days or weeks) >90% of all diffractive protons are seen in the Roman Pots Proton momentum measured with a resolution ~10⁻³

```
Low \beta^*: (0.5m): Lumi 10^{33}-10^{34} cm<sup>-2</sup>s<sup>-1</sup>
215m: 0.02 < \xi < 0.2
300/400m: 0.002 < \xi < 0.2 (RPs in the cold region)
```


Procedure

INPUT Results of Helsinki group studies: Acceptance (ξgen) Offset (ξgen) Resolution (ξgen) for 3 Roman Pot locations: 420m, 308m and 215m and

for 3 Roman Pot locations: 420m, 308m and 215m and for clockwise and anti-clockwise moving protons.

2. FAMOS

Put the above information into FAMOS (Fast Monte Carlo Simulation for CMS) and smear $\xi_{gen} \rightarrow \xi_{sim}$ using a MC event generator. All configurations foreseen: (420m); (308m); (215m); (420m+308m); (420m+215m); (308m+215m); (420m+308m+215m).

3. CHECK

Check if the implementation of the above info is correct by comparing Acceptance (Mgen) Resolution (Mgen) = (Mgen - Msim)/Mgen

obtained by Helsinki with that obtained by FAMOS.

DPE Higgs event generators

- 1. DPEMC 2.4 (M.Boonekamp, T.Kucs)
 - Bialas-Landshof model + rap.gap survival probability
 - Herwig for hadronization
- 2. EDDE 1.1 (V.Petrov, R.Ryutin)
 - Regge-eikonal approach
 - Pythia for hadronization

All three models available now in the fast CMS simulation!

- 3. ExHuMe β version (J.Monk, A.Pilkington)
 - KMR model for exclusive diffraction
 - Pythia for hadronization

FAMOS_1_0_0

Fast CMS simulation program has seen a lot of effort and improvement last year. While still being improved and debugged, it can (and it is) already used for physics analyses.

Main chapters:

- Fastcalorimetry, FastElgamma, FastElMatching
- FastTsim, FastBtag
- FastJets, FastMET, FastHLTMET
- FastMuon, FastMuonTrigger
- FastTotem (just Roman Pots)

FAMOS_1_0_0: Jet energy scale

• Simulation parameters:

Initial conditions

Transverse vertex position	σ _{×y} = 16 μm
Beam energy spread	σ _ε = 1E-4
Beam divergence	σ ₀ = 30 µrad
Detector simulation	
Position resolution	σ _{×y} = 10 μm
Beam position resolution	σ _{×y} = 5 μm
Detector misalignment	∆×y = 10 µm
Absolute beam position	∆ _{×y} = 10 µm

Smearing:

clockwise moving protons: ξsim1 = ξgen1*(1-offset(ξgen1) + σIP1(ξgen1)*rIP,Gauss + σother1(ξgen1)*rother1,Gauss)

anti-clockwise moving protons: ξsim2 = ξgen2*(1-offset(ξgen2) - σIP2(ξgen2)*rIP,Gauss + σother2(ξgen2)*rother2,Gauss)

3. CHECK: MH Acceptance

= technical challenge: cold region, trigger

MH acceptance and resolution depend on ξ_1 and ξ_2 acceptances and resolutions through

$$MH^2 = \xi_1 * \xi_2 * s$$

Hence

$$M^2$$
gen = ξ gen1 * ξ gen2 * S

$$M^2$$
sim = ξ sim1 * ξ sim2 * S

RP selection sequence:

If ξ_{gen} falls into acceptance regions of more RPs, the most distant RP is taken (because of better resolut.).

Parton level: Protons

10

Parton level: Higgs

Parton level: b-quarks

Hadron level: all particles

Hadron level: b-jets

Hadron level: b-jets and particles

Detector level: all particles

Detector level: b-jets

Detector level: jets and particles

18

Excl.DPE H->WW:Event yields per L=10 fb-1

Both protons accepted in one of three RP stations (220,308,420):

57,66,68,75,80,85,90,100% for mh=120,135,140,150,160,170,180,200 GeV resp.

C1) single e: pt1 > 29 GeV, |n1| < 2.5

C2) two e: pt1,2 > 17 GeV, |n1,2| < 2.5

C3) single μ : pt1 > 14 GeV, $|\eta 1| < 2.1$

C4) two µ: pt1,2 > 3 GeV, |n1,2| < 2.1

Numbers come from DPEMC generator level.

Only total numbers are scaled by KMR σ xBR

C5) single e: pt1 > 20 GeV, |n1| < 2.5 + 2 quarks: pt1,2>25 GeV, |n1,2|<5

C6) single μ: pt1>10 GeV, |η1| < 2.1 + 2 quarks: pt1,2>25 GeV, |η1,2| < 5

mh [GeV]	σ×BR [fb	C1	C2	C3	C4	<i>C</i> 5	C6	Total
120	0.34/0.40	0.14	0.01	0.27	0.02	0.02	0.07	0.5/0.6
135	0.98/0.81	0.51	0.04	1.04	0.06	0.15	0.28	2.1/1.7
140	1.23/0.92	0.71	0.07	1.38	0.07	0.24	0.37	2.8/2.1
150	1.72/1.05	1.32	0.10	2.19	0.12	0.58	0.71	5.0/3.1
160	2.26/1.10	2.22	0.17	3.08	0.17	1.37	1.34	8.4/4.1
170	2.36/1.01	2.50	0.20	3.62	0.16	1.54	1.59	9.6/4.1
180	2.22/0.80	2.46	0.18	3.60	0.16	1.45	1.45	9.3/3.3
200	1.69/0.48	2.20	0.15	3.00	0.14	1.16	1.18	7.8/2.2

Excl.DPE H->bb: Event yields per L=10 fb-1

```
• Selection cuts at detector level:
0) Both protons accepted in one of three (220,308,420) RP stations
1) N_{jet} > 1
2) 45 < Etj1*JesCor < 85 GeV, Etj2*JesCor > 30 GeV
3) |\eta_{j1,2}| < 2.5
4) |\eta_{j1} - \eta_{j2}| < 0.8
5) 2.8 < |\phi_{j1} - \phi_{j2}| < 3.48
6) Mj1j2/Mtot > 0.75
7) Mj1j2/Mmiss.mass > 0.8
                                       *KMR calculation
8) Npart(3 < |\eta| < 6) = 0
9) 118 < Mmiss.mass < 122 GeV
```

Generator	σxBR[fb]	Acc1*Acc2>0	Nev
DPEMC	2.27	57%	0.4
EDDE	1.94	51%	0.7
ExHuMe	1.3/2.03*	78%	0.8/1.2

Summary

- DPEMC, EDDE and ExHuMe generators made available in the fast CMS simulation
- RP acceptances and resolutions also there
- The generators' codes fast developing, nevertheless large differences between the models observed. Mainly in two basic quantities: ξproton and yHiggs

Predictions of basic characteristics are model dependent. To obtain solid S/B ratios, we need to understand the differences.