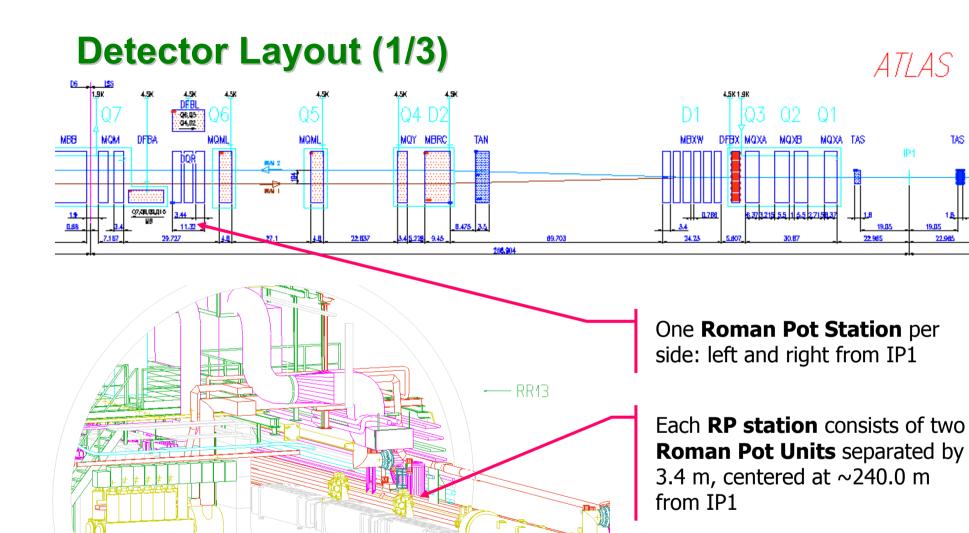
ATLAS Forward Detector Trigger

ATLAS is presently planning to install forward detectors (Roman Pot system) in the LHC tunnel with prime goal to **measure the luminosity** at very low –t values i.e. in the **Coulomb region**

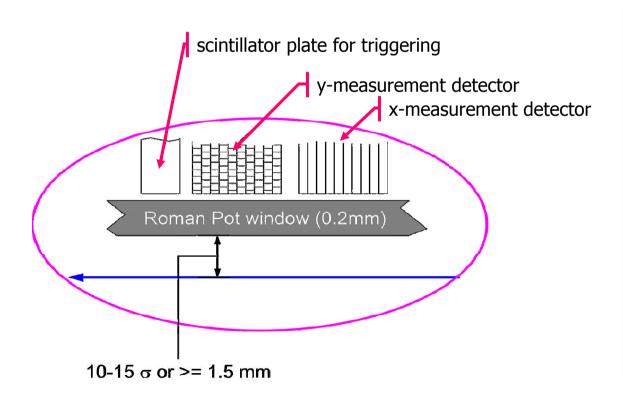


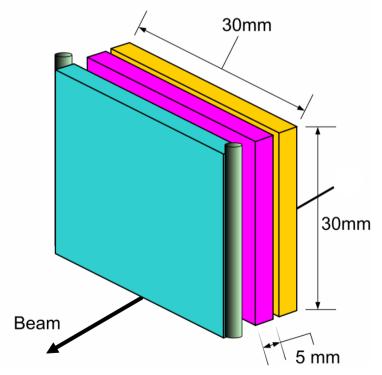
the trigger issue is basically simple ...

Outline

- Detector Layout
- Trigger Implementation
- Trigger Rates

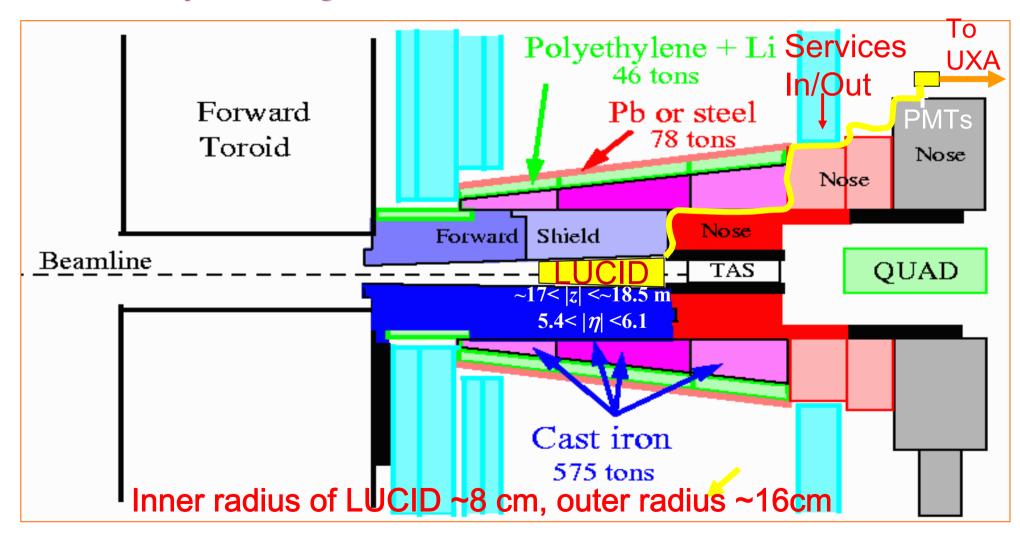
Ilias Efthymiopoulos HERA LHC Workshop January 18, 2005


TAS


Detector Layout (2/3)

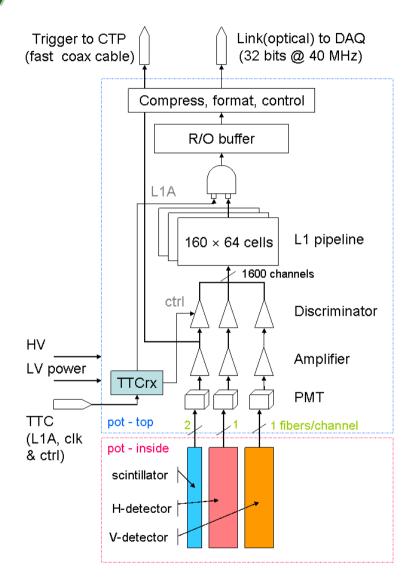
The Roman Pot Detectors

- Scintillating fiber tracker
 - Kuraray 0.5 mm \times 0.5 mm fibers
 - 10 layers per coordinate
 - 50 μm offset between layers


- Large scintillator plane for trigger
 - 2-3 mm thick
 - double fiber readout from the edges

Detector Layout (3/3)

Luminosity Monitoring Detector - LUCID


Trigger implementation (1/2)

Trigger

- Basic trigger menu for **elastic events**left-side (right-side) up (down) detector ⊕
 right-side (left-side) down (up) detector
- Trigger cables from each detector arrive to USA15
 - Air-core cables shortest path
 - Final logic within ATLAS central trigger processor-CTP

Read out modes

- **Stand-alone mode:** RP detectors and LUCID
 - The RP detector and LUCID pipelines will be made sufficiently deep to avoid any latency problems
- Integrated mode:
 - Can the RP trigger signals arrive within the defined L1 latency of 1.8us (including 0.4us for contingency) to the ATLAS central trigger processor?
 - A. YES:
 - The RPs provide the trigger as, other ATLAS subdetectors
 - Readout RPs, LUCID and any other sub-detector
 - B. NO:
 - We can program a software trigger in CTP for each BC
 - Running with 43 bunches in the machine (493KHz) and for the maximum L1 rate of 75KHz implies reading one out of 6(7) bunches
 - Loss in statistics

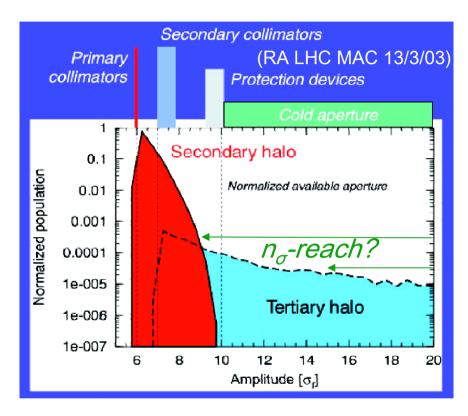
Trigger implementation (2/2)

Latency

		Time (ns)
Particle path from IP to RPs	240(m) × 3.3357 (ns/m)	800
Signal treatment in local RP electronics		50
Signal x-mission from RP to CTP in USA15	280 (m) × 3.586 (93%) (ns/m)	1004
Final coincidence – trigger menu		100(0)
Total		1954(1854)

- Almost meets the ATLAS L1 latency requirement of 1.8 us
 - The final estimate can only be done after the cable path from the RPs to USA15 is defined
- If finally required, going beyond the 1.8us may be possible
 - The L1 latency is determined by the length of the pipelines for the LArgon Calorimeter
 - It has a length of 144 cells (3.6 us) part of which is used as derandomizer buffer to avoid dead time at the maximum rate of 75(100)KHz
 - Given the low rate for our case, the FE chips could be re-programmed to reduce the buffer space in favour of the pipeline part
 - For example going from 1.8us to 2.1us seems guite feasible, however would require re-timing of ATLAS

Trigger Rates (1/1)


Trigger rates

- Expected trigger rate for elastic events : ~
 30 Hz
 - 1M events / 12 hours at 10²⁷ cm⁻² s⁻¹

Backgrounds

Halo rate

- Depends on the collimation efficiency and detector position
- 43 bunches in the machine, 10¹⁰ ppb, $ε_N$ = 1.0 um rad, $n_σ$ =10 \rightarrow 6-10 KHz
- Is drastically reduced once a left-right coincidence is applied

Beam gas

- Also reduced by back-to-back signature
- Even further using time of flight from IP and vertex reconstruction extrapolating the "local track" found in the two RP units

Summary

At this (early) stage for our project:

- Triggering for the luminosity measurement with the Roman Pot detectors not our major worry
- Trigger detector, mode of operation, Rates and backgrounds for the running scenarios we envisage seem under control
- Main issue that of latency
 - We could say more once the cable path for the RP detectors (along with final ATLAS cabling) is defined
 - However possible solutions exist will be evaluated if necessary

Still quite some way to go.....