

$gg \rightarrow H$ for different MC's: uncertainties due to jet veto, update

Giovanna Davatz, ETH Zurich

HERA/LHC Workshop, CERN 17th -21st January 2005

Outline

- Short summary of last meeting's results
- Jet energy smearing : get new uncertainty
- New CASCADE version: results
- Outlook

Where we left off

Comparing PYTHIA 6.225, HERWIG 6.505 and MCatNLO 2.31

without underlying events

 The total efficiencies for HERWIG, MCatNLO and PYTHIA vary by ~ 5%

	ε
ΡΥΤΗΙΑ	0.62
HERWIG	0.63
MCatNLO	0.59

• In the region of interest for the gg→H→WW→lvlv signal selection, the difference is even smaller

	ε for p _T ^H < 80 GeV	
ΡΥΤΗΙΑ	0.72	
HERWIG	0.70	
MCatNLO	0.69	

→ for the region where $p_T^H < 80$ GeV, the 3 MCs vary even less

 Including higher order corrections (by reweighting) leads to about same efficiency uncertainty as the leading order case

	3	ε
		reweighted
ΡΥΤΗΙΑ	0.62	0.56
HERWIG	0.63	0.60
MCatNLO	0.59	0.57

• Including Matrix Element corrections for $gg \rightarrow H$ in HERWIG leads to an overall efficiency of 0.55 (0.63 without ME corrections), and 0.67 instead of 0.70 for region where $p_T^H < 80$ GeV

Including underlying events:

- The different PYTHIA tunings for the underlying events lead to about the same efficiency
- The difference in the efficiency between PYTHIA with and without underlying events is smaller than 1%

proceeding: compare new Monte Carlo versions

New versions for HERWIG(6.506) and PYTHIA(6.227):

Matrix Element correction not yet included in new HERWIG version, PYTHIA now per default Rick's Tune A for underlying events

Without underlying events: very small difference in efficiency between old and new versions (≈ 0.01)

With underlying events differences for PYTHIA already shown last time

Efficiency after smearing

Get realistic CMS efficiency for jet veto with smeared Jet Et:

jet resolution: $\Delta E_T / E_T = 118\% / sqrt(E_T) + 7\%$

	3	ϵ smeared
ΡΥΤΗΙΑ	0.61	0.61
HERWIG	0.62	0.61
MCatNLO	0.59	0.58

р _т ^н < 80 GeV	ε	ϵ smeared
ΡΥΤΗΙΑ	0.72	0.72
HERWIG	0.70	0.70
MCatNLO	0.69	0.69

Efficiency after smearing

Smearing: tendency to lower efficiency, as can be expected:

there are more jets at low pt than high pt →smearing: more jets which had pt below 30 GeV now have pt above 30 GeV than vice versa

 \rightarrow jet veto should affect more events after smearing

but: effect very small

New CASCADE version

There was a bug in CASCADE, new version released

CASCADE 1.2007

difference per bin is still too big, needs further investigation!

Conclusion and Outlook

 Smearing jet E_T does not affect uncertainty between PYTHIA, HERWIG and MCatNLO much

→ don't expect much difference in ORCA simulation!

- Will run ORCA to see how much the uncertainty will be after full detector simulation
- Study with CASCADE needs further improvements

Special thanks to A.Nikitenko