Towards a b-jet calibration in DØ

Jochen Cammin

University of Rochester

12/14/2004

- Response measurement with γ + jets events.
- The MET projection method
- How to extract the b-jet response
- Summary

Jet energy scale

Purpose of the jet energy scale:

• Scale 'detector-level' energy to particle level energy

$$E_{jet} = \frac{E_{jet}^{meas} - E_0(\Delta R, \eta, L)}{R_{cone}(\Delta R, E, \eta) \times R_{jet}(\Delta R, E, \eta, \phi)}$$

- E_{jet}^{meas} : measured jet energy
- $E_0(\Delta R, \eta, L)$: offset (uranium noise, pile-up)
- $R_{cone}(\Delta R, E, \eta)$: fraction of energy inside cone with radius ΔR
- $R_{jet}(\Delta R, E, \eta, \phi)$: jet response in calorimeter

• This talk covers only jet response R_{jet}

Measuring the jet response

- Response *R_{jet}* derived from γ+jets events using the Missing *E_T* Projection Fraction method (see slide 5)
- To minimze resolution bias, introduce energy estimator $E' = E_T^{\gamma} \cosh \eta_{jet}$
- Parameterization: $R_{jet} = p_0 + p_1 \ln \left(\frac{E_{jet}^{meas}}{E_0} \right) + p_2 \ln^2 \left(\frac{E_{jet}^{meas}}{E_0} \right)$

Jets:

• Run II cone jets with $\Delta R < 0.5$

• η regions: ECN: $-2.5 < \eta_{det} < -1.8$, CC: $|\eta_{det}| < 0.5$, ECS: $1.8 < \eta_{det} < 2.5$, EMs:

- $N_{EM} = 1, \ p_T > 6 \ {
 m GeV}$
- $|\eta_{det}| < 1.1$ or $1.6 < |\eta_{det}| < 2.5$, in fiducial, no trackmatch, HMX 7<12 General:
- EM and leading jet: $\Delta \phi > 3.1$
- no bad jets with $p_T > 8 \text{ GeV}$
- one PV with at least 3 tracks, z withing 50 cm from center
- missingET cut (depends on p_T^{γ})

Event samples: about 40 M γ + jets events:

The MPF method

MPF = Missing ET Projection Fraction Method

- use \(\gamma\)+jet(s) sample (back-to-back topology)
- ideal calorimeter: $\vec{E}_{T\,\gamma} + \vec{E}_{T\,had} = 0$

• real:
$$R_{em}\vec{E}_{T\gamma} + R_{had}\vec{E}_{Thad} = -\vec{E}_T^{miss}$$

$$R_{had} = 1 + rac{ec{E}_T^{miss} \cdot \hat{n}_{T\,\gamma}}{E_{T\,\gamma}}$$

implies that em-scale is well known

•
$$R_{jet} = R_{jet}(E_{meas})$$

- E_{meas} not well measured \rightarrow bias due to jet resolution and steeply falling cross section
- \rightarrow bin in well measured quantities:

$$E' = E_{T\gamma}^{meas} \cdot \cosh(\eta_{jet})$$

photon

leading jet

ΔØ

plots by A. Kupčo

• Center of Gaussian fit to response curve gives y-coordinate

• Mean of energy distribution gives x-coordinate

Jochen Cammin (UR)

TeV4LHC Higgs WG Meeting - 12/14/2004

Response and uncertainties

plots by A. Kupčo

Much improved JES uncertainties expected for the future

Why we must care about b-jet scale

- Correct jet energy scale is crucial for all analyses
- Current situation in DØ: (non-semileptonic) b-jet scale is the same as for light jets
- But b-jet response might be different (e.g. from fragmentation)
- Uncertainty or shift translates directly into top mass

What do we get from Monte Carlo?

Disclaimer: All following results are preliminary and still under study and not certified!

(Increase statistics by relaxing cut: $\Delta \phi > 2.9$)

Response in tagged samples

Response for different lifetime taggers: CSIP, SVX, JLIP

To give an idea of stat. errors, the data points for SVX are shown in the plots.

Different taggers work at different operation points
 → different efficiencies and purities → different responses

need pure b-response

Disentangling response

In tagged samples, R_t is a mixture of responses of $\gamma + b$, $\gamma + c$ and mistagged $\gamma +$ light jets events

Extracting response of b-jets R_b

In each E' bin solve a system of equations

untagged:
$$R_{ut} \approx R_l$$
 (1)
tagged: $R_t = f_l R_l + f_b R_b + f_c R_c$ (2)
tagged+mass tag: $R_{mt} = f'_l R_l + f'_b R_b + f'_c R_c$ (3)
 $\sum_i f_i^{(\prime)} = 1$ (4)

3 equations, 3 constrains, but statistics might be a problem.

$$\rightarrow R_b = \frac{1}{f_b - \frac{f_c}{f_c'} f_b'} \left[R_t - R_{ut} \left(f_l - \frac{f_c}{f_c'} f_l' \right) - R_{mt} \frac{f_c}{f_c'} \right]$$
(5)

 $(R_{ut} = \text{response in untagged samples}, R_t = \text{response in tagged samples}, R_{mt} = \text{response in tagged} + \text{mass tagged samples})$ Must know proper flavor fractions f_i in the different samples.

Jochen Cammin (UR)

TeV4LHC Higgs WG Meeting – 12/14/2004

(From a study by A. Khanov)

- in addition to lifetime tag, apply mass tag
- invariant mass of tracks with large DCA significance
 > 1.9 GeV

Efficiencies in EMqcd sample

	b	с	light
CSIP	0.350	0.088	0.005
CSIP+mass tag	0.150	0.007	0.0007

An approximative approach

At present, not enough statistics available to derive full energy dependence (\sim 1000 events in tagged γ + jets sample). Try a more inclusive approach as approximation.

Response in CC

(should be centered at 1)

An approximative approach (continued)

assume that distribution for b- and c-jets are the same except for scale factors K_b and K_c: G_b(R) = G_l(K_b · R)

oplot corrected response for tagged samples and fit

$$\mathsf{fitfunc} = f_l \cdot G_l(R) + f_b \cdot G_l(K_b \cdot R) + f_c \cdot G_l(K_c \cdot R)$$

Flavor fraction fit/enhancing b-content

- Fractions after tagging f_l =50% f_c =24% f_b =26% (from template fit)
- Enhance b-fraction with additional cut on inv. mass of tagging tracks $(\Delta M_{inv} > 1.3 \text{ GeV})$
- Efficiency for mass cut: light=13% c=12% b=45%
- fractions after mass cut: $f_1=32\%$ $f_c=13\%$ $f_b=55\%$ much enhanced b content

Use: $f_l = 0.32, f_b = 0.55, f_c = 0.13$ (very preliminary estimate!) $\Delta \phi > 3.1$

Inclusive – all energies

- $K_b = 0.92 \pm 0.03$
- $K_c = 0.92 \pm 0.09$ (preliminary estimates)
- Correlations not taken into account in fit

 K_b from Monte Carlo: ≈ 0.93 –0.94

 $(\Delta \phi > 3.1)$

Conclusions

- Measurement of heavy flavor jet response has just started in DØ; detailed studies to be performed in the next months
- Important for top mass measurement
- Limited by statistics; full energy dependence of b-response not yet derived; but will improve very soon
- Cross-check on 'inclusive energy' sample yields $R_b\approx (92\pm3)\%\times R_j$ (note: this is only a preliminary estimate!)
- Several issues to discuss
 - b-response with different taggers
 - combining with semileptonic corrections
 - provide c-response
- $\bullet~D \ensuremath{\ensuremath{\mathcal{D}}}$ will also look into $Z^0 \to b \ensuremath{\overline{b}}$