Non-standard Higgs Searches

at the Tevatron

Tao Han Univ. of Wisconsin – Madison/Fermilab

(Tev4LHC, FNAL, Dec.14, 2004)

Non-standard Higgs Searches

at the Tevatron

Tao Han Univ. of Wisconsin – Madison/Fermilab

(Tev4LHC, FNAL, Dec.14, 2004)

Push the Higgs searches at Tevatron to the limit: Check every corner and turn every stone over ... Non-standard Higgs Searches

at the Tevatron

Tao Han Univ. of Wisconsin – Madison/Fermilab

(Tev4LHC, FNAL, Dec.14, 2004)

Push the Higgs searches at Tevatron to the limit: Check every corner and turn every stone over ...

 Motivated by what we can "see" at CDF/D0: explore unconventional scenarios; search for rare (clean) modes "Standard" Higgs Searches at the Tevatron

Leading production in SM:

$$egin{array}{ll} q \overline{q}'
ightarrow Wh, \ Zh, \ h
ightarrow b \overline{b} \ gg
ightarrow h, \ h
ightarrow WW^*, \ ZZ^* \end{array}$$

Run-II Higgs working group report: (M. Carena, J. Conway et al., hep-ph/0010338.)

We can "see" those (well):

• leptons: $e^{\pm},\ \mu^{\pm},\ \tau^{\pm},$ and thus $W^{\pm},\ Z$

 γ

- photons
- heavy quark: **b**
- missing energies: E_T

We can "see" those (well):

• leptons: $e^{\pm},\ \mu^{\pm},\ \tau^{\pm},$ and thus $W^{\pm},\ Z$

 γ

- photons
- heavy quark:

"Non-standard" Searches

A (partial) list of non-standard Higgs modes — with theoretical commentaries (1). $h/H/A \rightarrow \tau^+ \tau^-$: complementary between $gg \rightarrow b\bar{b}h$ and $gg \rightarrow hj$

- improve the region for large $\tan \beta$
- extend the coverage to low M_A , tan β . *

*Belyaev, TH, Rosenfeld, hep-ph/0204201; D. Morrissey and C. Wagner, hep-ph/0308001; Conway, Anastassov: SUSY04.

Leptonic decays

(1). $h/H/A \rightarrow \tau^+ \tau^-$: complementary betweeen $gg \rightarrow b\overline{b}h$ and $gg \rightarrow hj$

- improve the region for large $\tan\beta$
- extend the coverage to low M_A , tan β . *

*Belyaev, TH, Rosenfeld, hep-ph/0204201; D. Morrissey and C. Wagner, hep-ph/0308001; Conway, Anastassov: SUSY04. (2). $h/H/A \rightarrow \mu^{\pm} \tau^{\mp}$ (maybe also $e^{\pm} \tau^{\mp}$, $e^{\pm} \mu^{\mp}$ *)

Very interesting since

- good experimental signatures to search for;
- motivated by $\nu_{\mu} \nu_{\tau}$ oscillations: nearly-maximal mixing!

*CDF Run-I report, hep-ex/0307012.

(2). $h/H/A \rightarrow \mu^{\pm} \tau^{\mp}$ (maybe also $e^{\pm} \tau^{\mp}, e^{\pm} \mu^{\mp} *$)

Very interesting since

- good experimental signatures to search for;
- motivated by $\nu_{\mu} \nu_{\tau}$ oscillations: nearly-maximal mixing!

If coupling scales with masses

$$\kappa \sqrt{rac{m_{\mu}m_{ au}}{v}}$$

like certain class of model predicted, then

 $\kappa \sim O(1)$

can be probed at the Tevatron with 2 fb^{-1} .

(3). $q\bar{q} \rightarrow \gamma, Z^* \rightarrow H^{++}H^{--} \rightarrow \ell^+\ell^+, \ell^-\ell^-$

Current CDF bound:[†] $M_{++} > 135$ GeV.

Consider the production $q\bar{q}' \rightarrow W^+ \rightarrow H^{++}H^-$, $H^{++}W^$ to improve the search (kinematically favored);

Consider the decay $H^{++} \rightarrow \tau^+ \tau^+$, H^+W^+ , W^+W^+ to reach a larger mass-coverage.[‡]

lead to like-sign $\ell^{\pm}\ell^{\pm}X$ signatures!

[†]CDF Run-II report: hep-ex/0406073. [‡]J. Gunion, C. Loomis, K. Pitts: hep-ph/9610237. (3). $q\bar{q} \rightarrow \gamma, Z^* \rightarrow H^{++}H^{--} \rightarrow \ell^+\ell^+, \ell^-\ell^-$

Current CDF bound:[†] $M_{++} > 135$ GeV.

Consider the production $q\bar{q}' \rightarrow W^+ \rightarrow H^{++}H^-$, $H^{++}W^$ to improve the search (kinematically favored);

Consider the decay $H^{++} \rightarrow \tau^+ \tau^+$, H^+W^+ , W^+W^+ to reach a larger mass-coverage.[‡]

lead to like-sign $\ell^{\pm}\ell^{\pm}X$ signatures!

(4). Fermiophobic Higgs: If the coupling $h_i b \overline{b}$ suppressed, then $BR(h_i \rightarrow WW^*, ZZ^* \rightarrow \text{leptons})$ enhanced. look for $q \overline{q} \rightarrow Wh$, $Zh \rightarrow \text{multiple leptons}$.

[†]CDF Run-II report: hep-ex/0406073. [‡]J. Gunion, C. Loomis, K. Pitts: hep-ph/9610237.

Photons

(5). Fermiophobic Higgs (again): If the coupling $h_i b\bar{b}$ suppressed, then $BR(h_i \rightarrow \gamma \gamma)$ greatly enhanced,

in particular if no large cancellation $t\overline{t}h - WWh$.

Photons

(5). Fermiophobic Higgs (again): If the coupling $h_i b \overline{b}$ suppressed, then $BR(h_i \rightarrow \gamma \gamma)$ greatly enhanced, in particular if no large cancellation $t\overline{t}h - WWh$.

Current CDF bound:[†] $M_{\gamma\gamma} > 82$ GeV.

• Can be extended to higher mass if considering

 $h \to WW^*, ZZ^*.$

• Consider possible variations:[‡] down-phobic only so there is $t\overline{t}h$.

[†]CDF Run-I result: hep-ex/0105006; TeV4LHC: A. Melnitchouk (D0); S. Lee (CDF). [‡]H. Davoudiasl, H.Logan, TH.

b's And More b's

(6). From the "top": $gg, q\bar{q} \rightarrow t\bar{t}$

Consider • $t \rightarrow bH^{\pm}$ bound exists.

- $gg, q\bar{q} \rightarrow t \ bH^{\pm}$ production and $H^{\pm} \rightarrow t\bar{b}$ (hard). [†]
- $t \to ch \to b\bar{b} \ j$, or ... Coupling $\sim \kappa \sqrt{\frac{m_c m_t}{v}}$?

[†]Belyaev et al., hep-ph/0203031; E. Berger et al., hep-ph/0312286.

b's And More b's

(6). From the "top": $gg, q\bar{q} \rightarrow t\bar{t}$

Consider • $t \rightarrow bH^{\pm}$ bound exists.

- $gg, q\bar{q} \rightarrow t \ bH^{\pm}$ production and $H^{\pm} \rightarrow t\bar{b}$ (hard). [†]
- $t \to ch \to b\overline{b} \ j, \ {
 m or} \ \dots \ {
 m Coupling} \ \sim \kappa \sqrt{rac{m_c m_t}{v}}$?

(7). $gg \rightarrow h/H_2 \rightarrow AA \text{ or } H_1H_1 \rightarrow 4b's$

CP-odd A, or CP-violating Higgs[‡] H_1 may be lighter... needed for e.w. baryogenesis.

[†]Belyaev et al., hep-ph/0203031; E. Berger et al., hep-ph/0312286. [‡]M. Carena et al., hep-ph/0410352.

b's And More b's

(6). From the "top": $gg, q\bar{q} \rightarrow t\bar{t}$

Consider • $t \rightarrow bH^{\pm}$ bound exists.

- $gg, q\bar{q} \rightarrow t \ bH^{\pm}$ production and $H^{\pm} \rightarrow t\bar{b}$ (hard). [†]
- $t \to ch \to b\overline{b} \ j, \ {
 m or} \ \dots \ {
 m Coupling} \ \sim \kappa \sqrt{rac{m_c m_t}{v}}$?

(7).
$$gg \rightarrow h/H_2 \rightarrow AA \text{ or } H_1H_1 \rightarrow 4b's$$

CP-odd A, or CP-violating Higgs[‡] H_1 may be lighter... needed for e.w. baryogenesis.

(8). $q\bar{q} \rightarrow ZH_2, WH_2 \rightarrow VH_1H_1 \rightarrow \ell, 4 b's$

[†]Belyaev et al., hep-ph/0203031; E. Berger et al., hep-ph/0312286. [‡]M. Carena et al., hep-ph/0410352. Invisible decays: $h \rightarrow \tilde{\chi}_0 \tilde{\chi}_0$, SS, etc.

may be substantial or even dominant. Test Higgs coupling to dark matter![‡]

(9). $q\bar{q} \rightarrow ZH \rightarrow \ell^+ \ell^- E_T$.

[‡]H. Davoudiasl, H. Logan, TH.

Recap

• Build upon the "Standard Search":

$$q\bar{q}' \to Wh, \ Zh, \quad h \to b\bar{b}$$

 $gg \to h, \quad h \to WW^*, \ ZZ^*$

Recap

• Build upon the "Standard Search":

$$q\bar{q}' \to Wh, \ Zh, \quad h \to b\bar{b}$$

 $gg \to h, \quad h \to WW^*, \ ZZ^*$

Search for the "Non-standard production/decays"

Motivated by what we can "see":

- leptons: $e^{\pm}, \ \mu^{\pm}, \ \tau^{\pm}, \ {\rm and} \ {\rm thus} \ W^{\pm}, \ Z$
- photons γ
- heavy quark:

"top-ten" list

Recap

• Build upon the "Standard Search":

 $q\bar{q}' \to Wh, \ Zh, \quad h \to b\bar{b}$ $gg \to h, \quad h \to WW^*, \ ZZ^*$

- Search for the "Non-standard production/decays"
 Motivated by what we can "see":
 - leptons: $e^{\pm}, \ \mu^{\pm}, \ \tau^{\pm}, \ {\rm and} \ {\rm thus} \ W^{\pm}, \ Z$
 - photons γ
 - heavy quark:
 - missing energies: E_T "top-ten" list

Each with motivations from underlining new physics. Let's hope the best!

