

SMrenna TeV4LHC Higgs WG

- A typical new physics signature (studied by experimentalists) is simulated as LO $(2 \rightarrow 2) \ d\sigma \oplus$ (N)LL parton showers \oplus non-perturbative physics models
- Q: What is the theory uncertainty?

Uncertainties in bH Production from ISR/FSR

- A: (commonly):
 - $\delta d\sigma \sim \text{vary } \mu_R, \mu_F$ from a NLO prediction + loop over 41 CTEQ6M PDF's
 - $\delta(PS) \sim average over no ISR/FSR$
 - $\delta({\sf NP})\sim 0$
 - $\delta(\text{Total}) = \sqrt{\sum_i \delta_i^2}$

Is this conservative/liberal/enough/reasonable?

 $\langle \rangle \otimes \langle \rangle$

Deconstructing the Prediction

SMrenna

TeV4LHC

- Higgs WG
- Hard physics characterized by a hard scale
- Proper description of *inclusive* quantities, such as total rate
- Not a good description of very exclusive quantities or kinematics much lower than hard scale

PS

 $d\sigma$

- DGLAP evolution of PDFs and fragmentation functions as dictated by the factorization theorem
- Valid to scales where perturbation theory is still valid \sim 1 GeV
- Resolves structure of inclusive cross section

Deconstructing the Prediction

SMrenna

NP

TeV4LHC

- Higgs WG
- Models and parameterizations of physics below 1 GeV
- Important to connect to what experimentalists see i.e., predicts kinematics of *B* mesons
- Begins where PS leaves off interconnected^a

^aIn principle, a change in PS cutoff requires a retuning of NP physics. Don't know exactly how important this is in practice – see next slides.

 $\mathbb{N} = \mathbb{N}$

Uncertainties

SMrenna

TeV4LHC

- Higgs WG
- All you have to play with is scales and PDFs
- Turning off radiation is a bad idea
- Assumes that the NP physics is tuned to a high scale, and works univerally when applied to a high scale
- Rather, want to vary PS within its range of validity,
 i.e. play with resummed logarithms

NP

 $d\sigma$

PS

- Not independent of the rest (look at RF's UE tunes)
- It is hard work to do this right but we must evolve in this direction
- For now, assume models are robust

SMrenna

TeV4LHC

Higgs WG

Parameter	Name	Default	ALEPH	DELPHI	L3	OPAL
Fragmentation function	MSTJ(11)	4	3	3	3	3
B aryon model option	MSTJ(12)	2	2	3	2	2
Azimuthal correlations	MSTJ(46)	3	0	3	3	3
$\mathcal{P}(\mathrm{q}\mathrm{q})/\mathcal{P}(\mathrm{q})$	PARJ(1)	0.100	0.095	0.099	0.100	0.085
$\mathcal{P}(\mathrm{s})/\mathcal{P}(\mathrm{u})$	PARJ(2)	0.300	0.285	0.308	0.300	0.310
$(\mathcal{P}(us)/\mathcal{P}(ud))/(\mathcal{P}(s)/\mathcal{P}(d))$	PARJ(3)	0.400	0.580	0.650	0.400	0.450
$(1/3)\mathcal{P}(\mathrm{ud}_1)/\mathcal{P}(\mathrm{ud}_0)$	PARJ(4)	0.050	0.050	0.070	0.050	0.025
$\mathcal{P}(S{=}1)_{ extsf{d}, extsf{u}}$	PARJ(11)	0.500	0.550	—	0.500	0.600
$\mathcal{P}(S{=}1)_{\mathbf{s}}$	PARJ(12)	0.600	0.470	—	0.600	0.400
$\mathcal{P}(S{=}1)_{\mathbf{c},\mathbf{b}}$	PARJ(13)	0.750	0.600	—	0.750	0.720
$\text{Axial}, \mathcal{P}(S{=}0{,}L{=}1{;}J{=}1)$	PARJ(14)	0.000	0.096	—	0.100	0.430
$ ext{Scalar}, \mathcal{P}(S{=}1,L{=}1;J{=}0)$	PARJ(15)	0.000	0.032	—	0.100	0.080
$\text{Axial}, \mathcal{P}(S{=}1, L{=}1; J{=}1)$	PARJ(16)	0.000	0.096	—	0.100	0.080
Tensor, $\mathcal{P}(S=1,L=1;J=2)$	PARJ(17)	0.000	0.160	—	0.250	0.170
Extra baryon suppression	PARJ(19)	1.000	1.000	0.500	1.000	1.000
σ_{q}	PARJ(21)	0.360	0.360	0.408	0.399	0.400
extra η suppression	PARJ(25)	1.000	1.000	0.650	0.600	1.000
extra η' suppression	PARJ(26)	0.400	0.400	0.230	0.300	0.400
a	PARJ(41)	0.300	0.400	0.417	0.500	0.110
ь	PARJ(42)	0.580	1.030	0.850	0.848	0.520
ε _c	PARJ(54)	-0.050	-0.050	-0.038	-0.030	-0.031
€Ъ	PARJ(55)	-0.0050	-0.0045	-0.00284	-0.0035	-0.0038
Λ_{LLA}	PARJ(81)	0.290	0.320	0.297	0.306	0.250
Q_0	PARJ(82)	1.000	1.220	1.560	1.000	1.900

Final state radiation well-tested at LEP

Range of Q_{\min}, Λ_{LLA} gives approximate picture of our understanding of FSR in resonance production

SMrenna TeV4LHC

Higgs WG

Estimating FSR Uncertainties

 Q_0 (the shower cutoff) is intimately related to the hadronization model – leave alone

 Λ_{LLA} is more sensitive to the dynamics of the PS

Branching Probability

$$d\mathcal{P}_a = \sum_{b,c} \frac{\alpha_s(c \ p_T^2)}{2\pi} P_{a \to bc}(z) dt dz$$
$$\mathcal{I}_{a \to bc}(t) = \int_{z_-(t)}^{z_+(t)} dz \frac{\alpha_s(c \ p_T^2)}{2\pi} P_{a \to bc}(z)$$

Resummation of large logarithms $\Rightarrow \alpha_s(c p_T^2)$

 $c\sim 1$

LL:
$$\alpha_s(p_T^2/\Lambda^2) \propto 1/\ln(p_T^2/\Lambda^2)$$

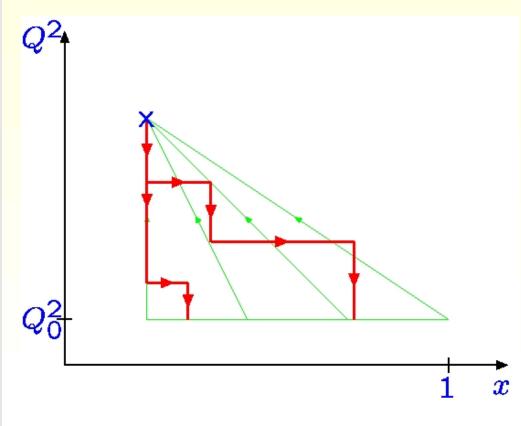
PYTHIA: PARJ(81)=.145-.580 $\Rightarrow c = 4 - \frac{1}{2}$

Initial State Radiation

SMrenna

TeV4LHC

Higgs WG


 $\bigotimes \gg \lor \land$

In hadronic collisions, incoming partons can also radiate

$$p_1 \rightarrow p_2 + k, p_1^2 = p_2^2 = 0 \Rightarrow k^2 = (p_1 - p_2)^2 = -2p_1 \cdot p_2 < 0$$

Backwards (from hard scatter) evolution of partons with virtualities increasing $\rightarrow 0$

Since backwards, must normalize to the incoming flux of partons (PDF)

- Collinear parton shower obeys
 DGLAP evolution
- Weight Sudakov: $\frac{f_i(x,Q_{
 m lo}^2)}{f_i(x,Q_{
 m hi}^2)}$

ISR Uncertainties

SMrenna

TeV4LHC

Higgs WG

Similar to FSR, can vary prefactor of p_T^2 in α_s , PDF's

PYTHIA: PARP(64)=.25-4.0

- $\Lambda_{\rm ISR}$ initially taken from PDF
- PDF dependence?
 - PS is based on DGLAP, but there is more physics in the PS than in PDF fits (i.e. exact kinematics, coherence)
 - For each step in the PS, the denominator cancels the PDF dependence of the previous step
 - Overall dependence is on the x and Q^2 values of the first (last in the backwards evolution) partons

Never seen this fully investigated

SMrenna TeV4LHC

Higgs WG


Alternative Approach: PS Corrections to ME

Several methods have been suggested to match multi-legged ME predictions with PS's

ad hoc approaches have been used for some time (using, e.g., the external event machinery inside PYTHIA)

Note: ME expressions for emissions reduce to the PS ones in the soft/collinear limit (without Sudakov form factors)

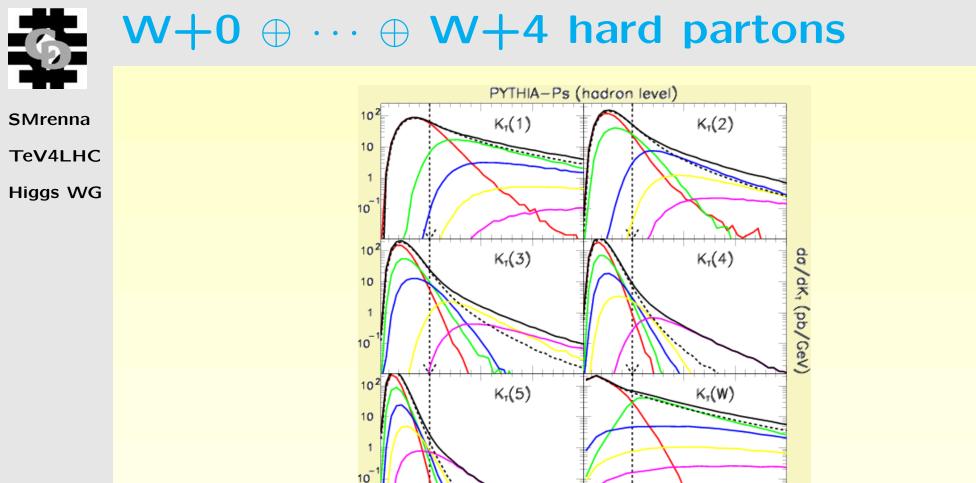
Matching Schemes correspond to interpolation strategies between the kinematic regimes where ME's or PS's are valid – varying how this is done constitutes an error estimate

SMrenna

TeV4LHC

Higgs WG

Method boils down to generating, e.g. $W + 0, 1, 2, \cdots$ at parton level with cutoffs and using PS to reweight and add them


Each individual sample has a well-defined kinematic delineation

- (a) $W + 0 k_T$ -jets> cutoff + any number below cutoff
- (b) W+1 and only 1 k_T-jet> cutoff + any number below
- (c) *etc.*

How does this work?

Vetoing an event with a hard emission is like reweighting by the Sudakov form factor on external lines

Internal lines are harder and would have Sudakov weights that are closer to 1

Dashed is Pythia with default (ME) correction Solid is Pseudoshower result

10

20

Combines ME contributions (0, 1, 2, 3, 4 partons)

30 40 10 K₁ Cluster (GeV) 20

30

40

Important issues for bH

Kinematics of the "spectator" b

SMrenna

TeV4LHC

Higgs WG

PS scale choice for $g \rightarrow b\overline{b}$ as compared to that for light QCD partons

We "know" little about the b and $g\ {\rm PDF}$'s, and how they affect the ${\rm PS}$

 $\ll \gg < >$