Searching for Atmospheric Neutrino Oscillations at MINOS

Andy Blake Cambridge University

April 2004

The MINOS Experiment

Main I njector Neutrino Oscillation Search

Fermi Laboratory

Near Detector (2004)

Neutrino Beam (2005)

Soudan Mine

Far Detector

COLLECTING DATA!

Atmospheric Neutrino Oscillations

- Compelling evidence for $n_{\rm m}$? $n_{\rm t}$ oscillations lots of experiments have measured up/down asymmetry in atmospheric $n_{\rm m}$ flux.
- MINOS magnetic field can distinguish m^- from m^+ , and thus n_m from \overline{n}_m .
- MINOS will make separate measurements of n_m ? n_t and \overline{n}_m ? \overline{n}_t oscillations in atmospheric neutrinos.

Detecting Atmospheric Neutrinos

- The MINOS detectors are sampling calorimeters.
 - Far Detector comprises ~500 interleaved planes of inch-thick magnetized steel and plastic scintillator.
- Need clean sample of $n_{\scriptscriptstyle m}$ CC events to measure oscillations.
 - select events with muon track and contained interaction vertex.
- Cambridge is developing event reconstruction software.
 - reconstruct particle tracks + showers.
 - measure particle direction + charge + energy.

Detecting Atmospheric Neutrinos

- Neutrino event signatures:
 - contained interaction vertex.
 - upward-going muons.
- Dominant background from cosmic muons
 - sneak between detector planes, appear contained (? containment cuts)
 - mis-reconstructed as upward-going muons (? direction cuts)
- Need to achieve ~10⁵
 cosmic muon rejection
 to separate neutrino signal.

Contained Events

(1) Fiducial Cuts

- consider top track vertex
- must be >50 cm from detector edge

(2) Trace Cuts

- trace track back to detector edge
- must cross >50 cm steel

(3) Topology Cuts

- Cut on steep muon topologies
- 1:1 signal-to-background achieved.

(4) Veto Shield Cuts

- planes of scintillator positioned above detector to tag cosmic muons
- >95% rejection rate.

Event X/Y View

Up-Going Events

MINOS Far Detector Timing Resolution ~ 2.5 ns

• Direction-Finding Algorithm:

- consider distance vs time for track
- force fits with $\beta = \pm 1$
- calculate RMS about each fit
- RMS_{down} - $RMS_{up} > 0$ for up-going tracks.

Charge Reconstruction

MINOS Far Detector Magnetic Field ~ 1.5 T

• Charge-Finding Algorithm:

changing momentum given by : $\frac{d\underline{p}}{ds} = 0.3Q\underline{p} \hat{B} + \hat{\underline{p}} \frac{dp_{loss}}{ds}$ $\hat{Q} = \frac{d\hat{\underline{p}}}{0.3|\hat{p} \hat{B}|^2}$

- need to measure curvature of muon track in magnetic field.
- parametrize track segments using polynomial fits.
- calculate <Q/p> along track.

> 90% charge separation

Current Status

- Currently analysing subset of data 17 candidate events so far!
 - selecting events with contained interaction vertices.
 - 14 neutrinos + 3 anti-neutrinos (consistent with expected ratio of ~3:1).
- Distributions of zenith angle + interaction vertex look sensible.
- Expect >100 contained events per year.

Conclusion

- MINOS Far Detector is able to identify atmospheric neutrino events.
- MINOS will carry out charge-separated atmospheric neutrino oscillation analysis.
- Data is now accumulating first physics results expected soon!