Λ -Based Perturbation Theory for Event Shapes in e^+ - e^- Annihilation

Michael Dinsdale, IPPP, Durham

IOP HEPP Conference, Parallel Session, 6/4/04

Talk Plan

• What is Λ -Based Perturbation Theory?

a.k.a. RESIPE (Dhar, Gupta), Method of Effective Charges (Grunberg), RGI perturbation theory...

Event Shapes

taking thrust as an example

• Previous Applications of Λ -Based PT to Event Shapes

means by the DELPHI collaboration, distributions by Burby and Maxwell

Our Analysis

including resummation of logs and power correction fits

Results

fits for $\Lambda_{\overline{MS}}$ and C_1

Work done in collaboration with C. J. Maxwell

What is Λ -based Perturbation Theory?

Standard Approach to Perturbation Theory

• Consider a perturbative QCD expansion of an observable normalized as an effective charge (with $a = \alpha/\pi$):

$$R(Q) = a_S(\mu) + r_1(\mu/Q, S) * a_S^2(\mu) + r_2(\mu/Q, S) * a_S^3(\mu) + \cdots$$

- R(Q) is independent of μ and S, but only because of cancellation between different orders. So, all finite order predictions depend on μ and S.
- Normally have NLO calculation $\rightarrow \mu$ dependence at $O(a_S^3)$.
- Standard fix: choose $\mu=Q$, vary to get theoretical error.
- BUT the definition of μ depends on S! Specifically our results depend only on the ratio μ/Λ_S .

What is Λ -based Perturbation Theory?

Λ -Based Approach to Perturbation Theory

- We take the dimensional transmutation parameter Λ , defined in some scheme (e.g. \overline{MS}) as the fundamental parameter to fit to data.
- For each effective charge R we write

$$\frac{dR(Q)}{d\ln Q} = \rho_R(R) = -bR^2(1 + cR + \rho_2^R R^2 + \cdots)$$

where ρ is the effective charge β -function.

Compare with

$$\frac{da_S(Q)}{d\ln Q} = \beta_S(a) = -ba_S^2(1 + ca_S + c_2^S a_S^2 + \cdots)$$

the β -function for the scheme S.

What is Λ -based Perturbation Theory?

Λ -Based Approach to Perturbation Theory

• Λ enters as a boundary condition. We can integrate up to find the relation

$$\Lambda_S e^{-r_1(\mu=Q,S)/b} = Q\mathcal{F}(R(Q))\mathcal{G}(R(Q)) \left(\frac{2c}{b}\right)^{c/b}$$

where the LHS and RHS are scheme independent. Explicitly:

$$\mathcal{F}(R) = e^{-1/bR} (1 + 1/cR)^{c/b}$$

$$\mathcal{G}(R) = \exp\left[-\int_0^R dx \left(\frac{1}{\rho_R(x)} + \frac{1}{bx^2(1+cx)}\right)\right]$$

• At NLO $\rho_R(x) = -bx^2(1+cx)$ so $\mathcal{G} = 1$.

Event Shapes

• Eg. thrust

$$\tau \equiv 1 - T \equiv 1 - \max_{\vec{n}} \frac{\sum_{i} |\vec{p_i}.\vec{n}|}{\sum_{i} |\vec{p}|}$$

 Standard PT on its own doesn't describe <1-T> very well. Instead we fit for an additional "power correction" giving something like:

$$<\tau> = <1-T> = 0.335\alpha_{\overline{MS}}(Q) + 1.02\alpha_{\overline{MS}}^{2}(Q) + \frac{C_1}{Q}$$

where $C_1 \sim 1 GeV$.

- More sophisticated approach: "Dokshitzer-Webber ansatz".
 Relate the power correction to a hypothetical infrared finite coupling → relate power corrections to different observables!
- Gives fairly successful description of data "approximate universality" for new parameter $\overline{\alpha}_0$.

Λ -based PT for Event Shape Means @ DELPHI

- The DELPHI collaboration have found that Λ-based PT describes the event shape means well without any power corrections.
- This plot shows the effective $\overline{\alpha}_0$ induced by converting the Λ -based results to the \overline{MS} scheme.
- Remarkable agreement with experiment compared to universality hypothesis!

A study of the energy evolution of event shape distributions and their means with the DELPHI detector at LEP, DELPHI Collaboration, J. Abdallah, et al, Eur.Phys.J. C29 (2003) 285-312

Λ -based PT for Event Shape Distributions

Also interesting to look at distributions. At NLO:

- Problems:
 - \circ Large logs $L = \log(1/\tau)$ appear in the 2-jet region $\tau \to 0$
 - $^{\circ}$ The EC description breaks down as au o 1/3

Direct Extraction of QCD Lambda MS-bar from e+e- Jet Observables, S. J. Burby, C. J. Maxwell, Nucl. Phys. B609 (2001) 193-224

Our Analysis

We wanted to build on this analysis in 2 ways:

• Large logs in the perturbative series for the distribution give large logs in the perturbative series for $\rho \rightarrow$ need for resummation:

$$\rho(R, L) = -bR^{2}(\rho_{LL}(RL) + L^{-1}\rho_{NLL}(RL) + \cdots).$$

• To see if the Λ -based approach needs smaller power corrections we wanted to fit for 1/Q shifts:

$$\left. \frac{1}{\sigma} \frac{d\sigma}{d\tau} \right|_{\tau} = \left. \frac{1}{\sigma} \frac{d\sigma}{d\tau} \right|_{PT, \ \tau - C_1/Q}$$

Define an effective charge via

$$R(Q,\tau) = \ln\left(\int_0^{\tau} \frac{1}{\sigma} \frac{d\sigma}{d\tau}\right) / LO$$

Our Analysis

- We need to select a limited fit range to avoid problems in the extreme 2-jet region and as $\tau \to 1/3$ (made worse by exponentiating).
- Found good fit quality with $\tau = 0.04 0.16$ at Q = 91.2 GeV with the lower bound scaling $\propto 1/Q$.
- Take data from TASSO, JADE, DELPHI, L3, SLD at energies Q=35-189 GeV.
- Note that the "standard approach" in the \overline{MS} scheme we can fit over a large range of $\tau!$

NLO

NLO

NLO LL NLL

NLO LL NLL

Conclusions

- Λ -based PT provides us with a way to make perturbative predictions without needing to fix μ by some kinematical argument.
- Analysis of event shape means has suggested this may give more accurate predictions than the standard approach, with significantly reduced power corrections needed to fit the data.
- We have applied this approach to some event shape distributions, and after significantly restricting the fit range we find good agreement with reduced (though still significant) power corrections.
- Adding resummed logs further reduces the fitted power correction.