

Alignment of the ATLAS hysics Inner Detector Using Tracks

- ATLAS Inner Detector
- Alignment
- Track alignment
- Results

Inner Detector - Silicon

Focus on aligning the 7 barrels of silicon detectors

4088 modules

2112 barrel modules

~200 UK produced modules received in Oxford

Alignment

- Sources of misalignment
 - Installation =>
 - Magnetic field turn on
 - ID mounted on the cryostat containing the solenoid/EM cal
- Effect
 - Resolution of track parameters degraded
 - Impact parameter B Physics
 - Systematic errors introduced
- Targets
 - RPhi alignment to ~10 microns
 - Measure W Mass => Higgs mass prediction (1 micron)

Alignment using Tracks

Two residuals for each hit (rphi,z)

Access rphi/z misalignments directly

Other degrees of freedom more complex

Not doing chisquared fit

Alignment strategy

In stages

- Align barrels internally (rphi/z)
 - exploit module overlaps
 - relative positions
 - ~independent of full barrel movements
- Align complete barrels
 - all 6 degrees of freedom
 - some sources of misalignment affect complete barrels

Internal barrel alignment

- 1) Align rings internally relative positions should add to zero
- 2) Align entire rings relative to each other

Internal barrel alignment - rings

Internal barrel alignment – ring to ring

Internal Barrel Alignment Results

	RPhi RMS (microns)		Z RMS (microns)	
Barrel	before	after	before	after
Pixel B	8.5	1.35	100.5	22.7
1	22.9	3.93	98.5	35.9
2	19.0	4.05	100.4	32.1
SCT 1	34.5	7.71	0	0
2	45.1	8.24	0	0
3	57.0	8.94	0	0
4	61.9	13.31	0	0

5 million 6 GeV muon tracks

(50 Hz => 28 hours)

Not enough tracks for SCT z misalignments

Barrel to Barrel Alignment

• Plot phi residual and z residual surfaces

Eg X Translation gives sine wave on phi residual surface

Fit 5 parameter function to phi surface for each barrel

6th April 2004

Danny Hindson, Oxford University

Alignment of complete barrels

Sagitta distortions

Removing 'sagitta' distortions

Plot E/p (E from calorimeter) for e+/e-Adjust detector until the two are the same Natural ~100 MeV e+/e- asymmetry in calorimeter (due to accordian structure?)

6th April 2004

Danny Hindson, Oxford University

Conclusions

- Demonstrated building blocks needed to construct track alignment system
 - most important degrees of freedom
- Further work
 - needs extending to the forward regions
 - degenerate modes