

Behaviour of MaPMTs in Magnetic fields

Introduction

What are MaPMTs?

MaPMTs and LHCb

Motivation

Why study the Effect of Magnetic field

Experiment and Results

Setup and Data Acquisition

Two Types of MaPMTs

Longitudinal/Transverse Magnetic Field

Analysis

Comparison Old vs New focusing

Tube 9C20A2 – Anodes Behaviour

Cause of the Losses

Cross Talk over Adjacent Channels

Solution

Conclusion

What are MaPMTs?

- Compact Multi anode Photomultipliers Tubes
- Convert light into electric signal with spatial resolution
 - commercial product from Hamamatsu
 - highest possible segmentation
 - 8x8 segmented anode & 12 dynode chain
 - pixel size: 2x2 mm²
 - Gain: 3*10⁵ at 800 V
 - UV glass window
 - Bialkali photo cathode
 - Quantum Efficiency (QE) = 22.5% at $\lambda = 380 \text{ nm}$

2.3mm

Multi-Anode Array

UV Glass Window

1000 V

Dynode Chain

Photocathode

- LHCb: Large Hadron Collider beauty experiment
- Detector being build at CERN for the study of CP violation

- LHCb: Large Hadron Collider beauty experiment
- Detector being build at CERN for the study of CP violation

- LHCb: Large Hadron Collider beauty experiment
- Detector being build at CERN for the study of CP violation

- LHCb: Large Hadron Collider beauty experiment
- Detector being build at CERN for the study of CP violation

- LHCb: Large Hadron Collider beauty experiment
- Detector being build at CERN for the study of CP violation

• RICH (Ring Imaging CHerenkov detector) essential for charged particles identification

- single photon sensitivity
- fast (<25ns) and low noise signal ratio
- tolerance against magnetic fields (~2.5 mT)
- radiation hard against a few krad/year
- photo detector area: 2.9 m²

• Example of a 3x3 MaPMT cluster with quartz lenses (testbeam data with ring reconstruction for over several thousands of events)

Why study the Effect of Magnetic field

- RICH1 is next to magnet with a 4Tm⁻¹ Field
- Used to be a shield but removed to increase the path bending to improve

Setup and Data Acquisition

- A magnet: Field from (+/-) 0 35mT
- MaPMT in a light tight box
- Light source: 4 LED ring $\lambda = 430$ nm
- High voltage: -1kV

Two Types of MaPMTs

9C series: Old focusing

9K series: New focusing

• Improved homogeneity for edge pixels (better pulse height and collection efficiency)

Longitudinal Magnetic Field

Transverse Magnetic Field

Comparison Old vs New focusing

Longitudinal field in z-direction

New focusing more sensitive to the field by ~ 10-20%

Normalised light yield in whole MaPMT

Tube 9C20A2 - Anodes Behaviour – z-direction

Conclusion

- Top and bottom row drop first
- 5th row population drops while side rows increases
- ~50% lost for edge rows at 3mT
- Column population decreases uniformly
- Same behaviour for tube 9K20C3 (new)

Distribution example at 6 mT

Tube 9C20A2 - Anodes Behaviour – z-direction

Conclusion

- Top and bottom row drop first
- 5th row population drops while side rows increases
- ~50% lost for edge rows at 3mT
- Column population decreases uniformly
- Same behaviour for tube 9K20C3 (new)

Distribution example at 6 mT

Percentage of light per MAPMT cluster

Run: 4389

Cause of the Losses

1.2 CoG: columns

0.8

0.6

0.4

0.2

signal spectrum of single pixel

Cross Talk over Adjacent Channels

Row 4 against row5

Pixel signal ratio with the top raw for z-direction (run 5865-5880)

Conclusion:

 No Cross talk induced by magnetic field

Cross Talk over Adjacent Channels

Row 4 against row5

Pixel signal ratio with the top raw for z-direction (run 5865-5880)

Conclusion:

 No Cross talk induced by magnetic field

Solution: Shielding with mu-metal

- Unshielded MaPMT
 - ~2 mT B longitudinal ~20 mT B transverse
- Single Mu-metal shield
 - 0.9 mm thick, 13 mm extension
 - can handle ~8 mT B longitudinal

Conclusions

- Measured photon yield and CoG up to 35mT
 - Loss of gain? \rightarrow Small effect (CoG)
 - Distortion of pattern? → No! (masked measurement)
 - Loss of photons? → Predominant effect!
- Loss of photons <10%:
 - ~2 mT B longitudinal / ~8mT with shielding
 - ~20 mT B transverse
- New focusing more sensitive the magnetic the field by ~10%
- MaPMTs fullfill LHCb criteria by using mu-metal shield

