CKM physics from B→K π decays at LHCb

Particle Physics 2004, Birmingham, 6th-7th Apr 2004

The LHCb Experiment

▶ LHCb is an LHC experiment for B physics

Single-sided detector because of bb production correlation

CKM physics from B \rightarrow K π

- A major task in B physics is to overconstrain the 2 "main" CKM triangles: γ can be obtained from B \rightarrow K π decays. Use an isospin argument to cancel strong phase differences.
- **Construct vars** R and A_o from $B_d → K^+ π^-$ and $B_u → K_s π^+$ rates:

$$\begin{pmatrix} R \\ A_0 \end{pmatrix} \equiv \frac{\mathcal{B}(B_d^0 \to \pi^- K^+) \pm \mathcal{B}(\overline{B_d^0} \to \pi^+ K^-)}{\mathcal{B}(B^+ \to \pi^+ K^0) + \mathcal{B}(B^- \to \pi^- \overline{K^0})}$$

(Note that relative selection efficiencies are important.)

- Define r as the tree-penguin amplitude ratio (model dep). Constrain y via R and A_o contours in r-y space.
- ▶ Useful cross-check of γ .

$B^+ \rightarrow K_S \pi^+ decays$

- ▶ B_d channel already investigated: predict yield of ~135k/yr.
- ▶ $B^+ \rightarrow K_S \pi^+$ channel under investigation. BR = 22.0 x 10⁻⁶.
 - K_s propagates a mean distance of 80cm: about 2/3 decay after the VELO. Introduce Upstream, Downstream and Long track type definitions.
 - Pions are assigned nominal π masses after RICH PID: only one kinematic cut (K_s mass).
 - ▶ Large pion and K_s populations from bb inclusive decays

K_s reconstruction

- Reconstruct via K_s → π⁻π⁺ decay chain (BR ~ 68%). Categorise as LL, DD, LU and LD according to π tracks. Pion types are naturally correlated.
- ► K_s pre-selection cuts are on IP w.r.t. PV, mass, p_τ with variations depending on pion track type.
- K_s mass plots (all from 400-600 MeV):

Just use LL and DD for now to avoid being swamped by background. Categorise whole decay as "LL" or "DD".

Typical cut variables (LL)

Some physical cut variable distributions from reconstructed LL events. Note that S/B are independently normalised; the background is actually much larger than signal:

Pi *pT*:

Ks mass:

NB. these are the *best* discriminant variables. Others have less S-B separation.

Ks decay z position:

Ks disp signf:

B+ mass:

Typical cut variables (DD)

And again for the DD events:

Pi *pT*:

Ks mass:

Ks decay z position:

Ks disp signf:

B⁺ mass:

DD has more background and it's more similar to the signal.

Tuning methods

- Several approaches attempted with 18 reconstructed vars
 - $(\pi \text{ and } K p, p_T, \sigma_{IP}; K \text{ mass, decay } z, \text{ lifetime, } \sigma_{\text{disp}} \text{ and vertex-fit } \chi^2;$ B mass, p, p_T, σ_{IP} , lifetime, $\sigma_{\text{disp}} \& \chi^2$. Phew!)
- No good 2D correlation clustering observed and no outstanding 1D cuts. Make marginal 1D cuts instead.
- Naïve approach to tuning cuts: form a 2-parameter window for each variable, position cuts by eye and then tune perturbatively. Rather than a grid scan (not a good idea in n = 36!), use Markov Chain Monte Carlo sampler (MCMC).
- Implementation is an OO library based on ROOT and GSL. Details: use a Nelder-Mead simplex minimisation sampler (no gradient info). Cut variables are shifted by the means of their signal component, rescaled by its extent and then tuned on the homogenised variables.
- What are we extremising? Hard to construct a metric which represents the optimal situation for extracting gamma. Typical variables: S/B, S/ \sqrt{B} or explicit $\epsilon \times \rho$.

Statistical issues

Need to weight bb part of the event sample to match actual relative fractions: account for generator cuts, geometric effects, branching ratios and hadronisation fractions:

$$w_{\rm bb} = \frac{S_{\rm tot}}{B_{\rm tot}} \times \frac{G_{\rm bb}}{G_{\rm sig}} \times \frac{1}{f_{\rm B_u^+} \times \mathcal{B}(\rm B_u^+ \to K_S^0 (\pi^+\pi^-) \pi^+)}$$

Net effect is that $w_{bb} \sim 780$ for 32k signal and $\sim 8M$ bb. Massive overweighting of single points (i.e. need much more bb data).

Given this, try to make life easy for sampler: characteristic function is $S/\sqrt{(B+1)}$ for its improved B scaling and Iim(S+B→0) regularisation. Additionally, only count S and B after L0 & L1 triggers: this hits bb events harder than signal events.

Results (LL)

LL B mass:

49 events from 32k signal. Eff = 7.44%, no background. Mass RMS ~ 30 MeV.

Note score progression and purity-efficiency plots.

Yield ~ 9.4k evt/yr

Score $(-S/\sqrt{(B+1)})$:

Eff-purity

Results (DD)

DD B mass:

92 events.

Eff = 5.06%, no background. Mass RMS ~ 50 MeV.

Yield ~ 18.7k evt/yr so total yield ~ 28k evt/yr.

Need more stats!

Score $(-S/\sqrt{(B+1)})$:

Eff-purity

Work to come

- Improve statistics: LHCb Data Challenge '04 approaching. Can also use B mass sidebands mapped into pre-sel mass window.
- Using gradient info in sampler?
- Better approaches to discrimination: diagonalised "natural" variables with box cuts or, even better, quadratic discriminants (see right). This is partially implemented already.
- Tune/test on different samples.
- And finally, get some real data!

Hopefully 28k evt/yr for B^+ , 135k evt/yr for B_d : good sensitivity to γ starting 2007...

Optimal QDA cuts on Gaussian populations

