WW scattering studies at a Future Linear Collider

IoP Particle Physics Meeting - Birmingham 2004.

Andres F. Osorio

andres@hep.man.ac.uk

The University of Manchester

Contents

- Motivations the EWSB problem
- Analysis of the process $W_L W_L o W_L W_L$
- Setup of the Study
- Z and W reconstruction
 - Kinematic fit
 - Applied cuts
- Summary
- Outlook

Motivations

- The symmetry of SU(2)⊗U(1) must be spontaneously broken to give mass to W and Z. But how?
- If there is no a Higgs, new physics is needed at the TeV scale to restore unitarity. It is in this context that the strong scattering of W_LW_L bosons provides a window to look for information about the underlying symmetry.
- The EW interactions at low energies can be described by the EW Chiral Lagrangian.
- This is an effective theory which:
 - has operators of higher dimensions
 - introduces anomalous couplings
- There are two 4D operators:

$$L_4 = \frac{\alpha_4}{16\pi^2} tr(V_{\mu}V_{\nu}) tr(V^{\mu}V^{\nu})$$

$$L_5 = \frac{\alpha_5}{16\pi^2} tr(V_{\mu}V^{\mu}) tr(V_{\nu}V^{\nu})$$

• The coefficients α_4 and α_5 are related to the scale of the new physics (in the SM these parameters are 0)

Motivations

- From WW scattering studies at LHC (Butterworth, Cox, Forshaw):
 - EW Chiral Lagrangian
 - Unitarization protocols (Padé or N/D)
 - \triangleright Prediction of resonances depending on the values of the α_4 and α_5 parameters
- As an example:

To sum up:

- What's the sensitivity to the α_4 and α_5 that can be reached at a Future Linear Collider?
- Given that these parameters can be measured, what can we learn about new physics at higher energies?
 (LHC - LC complementarity)

Analysis of process $W_LW_L \rightarrow W_LW_L$

 Our signal consists of the following processes:

$$e^+e^- \to \nu\bar{\nu}W_L^+W_L^- \to \nu\bar{\nu}q\bar{q}q\bar{q}$$

 $e^+e^- \to \nu\bar{\nu}Z_LZ_L \to \nu\bar{\nu}q\bar{q}q\bar{q}$

- Concentrate on M_{WW} and $\cos(\theta^*)$
- Backgrounds:

$$e^+e^-
ightarrow
u ar{\nu} q ar{q} q ar{q}$$
 (non-res.) $e^+e^-
ightarrow e^+e^- W^+ W^- (ZZ)$ $e^+e^-
ightarrow e^+
u W^- Z$ + c.c. $e^+e^-
ightarrow W^+ W^- (ZZ)$ $e^+e^-
ightarrow q ar{q}$

 Some of the main processes cross sections (without polarisation):

 Summary of the cross sections obtained from our study:

type	Process	Xsec [fb]	Generator
6 fermions	Signal	12.92	Whizard
	$e^+e^- \rightarrow \rightarrow q\bar{q}q\bar{q}\nu\bar{\nu}$	5.5	Whizard
	$e^+e^- o t \bar t$	136.9	Pythia *
	$\gamma\gamma \to t\bar{t}$	1.3	Pythia*
	$\gamma\gamma \to W^+W^-$	234.8	Pythia*
4 fermions	$e^+e^- o W^+W^- o q\bar{q}q\bar{q}$	1948.1	Pythia*
	$e^+e^- \to ZZ \to q\bar q q\bar q$	142.9	Pythia*
2 fermions	$e^+e^- o q \bar{q}$	4464.6	Pythia*

Setup of the Study

 For our study, we picked TESLA as our F.L.C:

(TeV Energy Superconducting Linear Collider Accelerator)

- Luminosity: $L = 100 fb^{-1}$
- C.M.E.: $\sqrt{s}=800~{\rm GeV}$
- Polarised beams: 0.80 e^- , 0.40 e^+
- Both ISR and FSR are turned On

Framework:

- WHiZard (Kilian) is the main event generator:
 - 6 fermions final states
 - the a.c. quartic couplings are included
 - beam polarisation

Setup of the Study

- We are using the fast Detector Simulation SIMDET (Phol,Schreiber):
 - Tracking system: CCD vertex detector (1.5cm) + Forward Tracker
 - Magnetic field: 4 T
- Calorimetry:
 - ECal resolution: $\Delta E/E = 0.2/\sqrt{E}$
 - HCal resolution: $\Delta E/E = 0.4/\sqrt{E}$
- Jet energies are measured using the Energy Flow concept.

Z and W reconstruction

- Main problem is to reconstruct Z and W pairs
- Tracks from the detector simulation are forced into 4 jets using the K_T jet algorithm If succeed, we then have 3 possible combinations
- First approach was to try a proximity selection method:

$$R^2 \le (M_W - M_{12})^2 + (M_W - M_{34})^2$$

- given an appropriate value for R
- The results obtained were not really convincing:
 - \sim 50% correct pairing rate

Therefore, we needed to improve the situation:

ho Kinematic Fit + 1 Constraint $Q(\vec{x}, \vec{\lambda}) = (\vec{x} - \vec{x}_0)V^{-1}(\vec{x} - \vec{x}_0) + 2\vec{\lambda}\vec{f}(\vec{x})$

• Where: $\vec{f}(\vec{x})$: constraints

 \vec{x} : jet parameters (P_{tot}, θ, ϕ)

 $\vec{\lambda}$: Lagrange multipliers

 $ec{V}$: error matrix

Error matrix: resolution functions

$$\sigma_{Ptot}(p_q), \, \sigma_{\theta}(p_q), \, \sigma_{\phi}(p_q, \theta_q)$$

• 1c: $M_{12} = M_{34}$

Z and W reconstruction

• Total momentum, and θ resolution:

• ϕ resolution:

$$\sigma_{Ptot} = -0.01212 + \frac{1.378}{P_q + 1.618}$$
 for Ptot < 100 GeV;
 $\sigma_{Ptot} = 0.0001$ for Ptot > 100 GeV
 $\sigma_{\theta} = 0.001776 + \frac{0.7048}{P_q - 1.507}$

$$\sigma_{\phi} = 0.006603 + \frac{0.172967}{P_q(\sin^2\theta + 0.338569^2)}$$

Kinematic fit

ZZ/WW selection (using 1st method)

• Now with the 1C Kinematic Fit:

• Correct pairing has raised up to \sim 75 %

Selection cuts

- ZZ selection
 - Missing mass: $200 < E_{miss}$
 - $-|\cos\theta_{P_{miss}}| < 0.99$
 - $|\cos\theta_{P_{Emax}}| < 0.99$
 - nTracks > 2
 - $Prob(\chi^2) > 0.70$
 - $85 < M_{1C} < 100 \; \mathrm{GeV}$

- WW selection
 - $-150 < E_{trans} < 600 GeV$
 - $M_{recoil} > 200 GeV$
 - $P_T > 20 GeV$
 - $-5.0 < y_{cut}^* < 7.5$
 - $Prob(\chi^2) > 0.70$
 - $-75 < M_{1C} < 85 \text{ GeV}$

Summary

- Our initial approach to reconstruct Z and W wasn't perfect
 - Needed a better method for our selection
- 1C Kinematic fit for the mass of Z and W: very is promising
 - \triangleright Improvement in correct pairing selection \sim 75 %
- We performed a detailed study on the resolution functions for the measured variables
- Cut analysis for the following processes is made for TESLA:

$$e^+e^- \to \nu\bar{\nu}W_L^+W_L^- \to \nu\bar{\nu}q\bar{q}q\bar{q}$$

 $e^+e^- \to \nu\bar{\nu}Z_LZ_L \to \nu\bar{\nu}q\bar{q}q\bar{q}$

However, this is not yet optimised

Outlook

Ongoing progress on:

- Refining the selection cuts \triangleright study sensitivity of the two a. c. α_4 and α_5
- Take above 90 % the correct pair selection
- LHC-LC comparison