Selected Recent Highlights from

Lepton-Nucleon Scattering at HERA

Paul Newman Birmingham University

- Introduction
- Inclusive Data
- Charm and Beauty
- ullet High $p_{\scriptscriptstyle T}$ Signals
- Pentaquarks

IoP Particle Physics Conference, 6 April 2004

HERA: High Energy Electron-Proton Scattering

Strong sector of Standard Model much more poorly understood than Electroweak . . .

In high energy ep Collisions, electron probes the strong interaction at work in the proton

- ... Measure the quark and gluon content of the proton
- ... Test our understanding of Strong Interaction dynamics
- \dots Search for new physics e.g. in mixed states, eq, eg

HERA: QCD from the established to the exploratory

Searches at highest \sqrt{s} with initial state lepton

$$s = (e + p)^2$$
 $(\sqrt{s} = 300 - 320 \text{ GeV})$
 $Q^2 = -(e - e')^2$ $(0 < Q^2 < 10^5 \text{ GeV}^2)$
 $x = Q^2 / (2p \cdot e)$ $(10^{-6} < x < 1)$
 $y = (p \cdot \gamma) / (p \cdot e)$

Sensitive to new physics on scales $\gtrsim 10^{-18}\ m$

HERA Status and Plans

HERA-I run, 1992-2000

 $\sim 100~{\rm pb^{-1}}~e^+p$, $\sim 15~{\rm pb^{-1}}~e^-p$ per experiment.

Sufficient for precision measurements at low/medium Q^2, x Glimpse at potential of highest Q^2, x region

Final HERA-I data published in many areas

Upgrade 2000-2002

Focusing magnets to improve luminosity

Spin rotators → Longitudinally polarised leptons

Many detector upgrades → extended phase space, precision

HERA-II run, 2003-2007(?)

- $ightarrow 1~{
 m fb^{-1}}$, shared equally between e^{\pm} with \pm helicity
- \rightarrow Precision era for high x, high Q^2 physics, heavy flavours ...

Reduced E_p running for F_L , high x & moderate Q^2

HERA performing well ... First results with polarised leptons

HERA-II Charged Currents with Polarised Leptons

Polarisation expected to have largest effect on CC cross section . . . Linear dependence in SM

First measurements of influence of lepton helicity on CC interactions in ep scattering

Polarisation $\sim 30\%$

HERA-I: High Q^2 and Electroweak Unification

Neutral current cross sections

$$\frac{\mathrm{d}\sigma^{\mathrm{NC}}}{\mathrm{d}x\mathrm{d}Q^2}\sim \frac{\alpha^2}{x} \qquad \cdot \qquad \left(\frac{1}{Q^2}\right)^2 \qquad \cdot \qquad \tilde{\sigma}_{\mathrm{NC}}$$

Charged current cross sections

NC and CC cross sections become comparable at EW unification scale
Illustration of electroweak unification with space-like gauge bosons, in beautiful agreement with Standard Model

HERA Data as an Input to LHC

Understanding signals and background at the LHC requires detailed knowledge of the quark and gluon composition of the incoming protons

If x dependence of parton densities are known at one \mathbb{Q}^2 value, DGLAP evolution allows us to obtain them at arbitrary \mathbb{Q}^2

HERA data constrains quark densities over most of x range for LHC to a few % and tests the applicability of DGLAP

Larger uncertainties on gluon and at high x or M

$$F_2(x,Q^2)$$

$$\tilde{\sigma}_{NC}^{\pm} = F_2 \mp \frac{Y_-}{Y_+} x F_3 - \frac{y^2}{Y_+} F_L$$

$$F_2(x, Q^2) \sim x \sum_q e_q^2 (q + \bar{q})$$

...dominates in most of phase space Measured over huge kinematic range

2-3% precision in bulk of phase space

Highest x region requires much more luminosity and / or reduced $E_{m p}$ running

Beautifully described by QCD fits

 \rightarrow strongest constraint on u, \bar{u}

Constrains gluon and α_s

via
$$\frac{\partial F_2}{\partial \ln Q^2} \sim \alpha_s x g(x)$$

e^+p Charged Current Cross Sections

HERA e⁺p Charged Current

$$\tilde{\sigma}_{CC}^{+} \sim x(\bar{u} + \bar{c}) + (1 - y)^2 x(d + s)$$

Promising for d density at high x

More data will help a lot

Still large errors at $x \stackrel{>}{_{\sim}} 0.5$ with $1~{\rm fb^{-1}}$

eD data would constrain d/u at large x

Parton Density Extractions from HERA Data alone

NLO DGLAP fits to HERA NC, CC data

u, d densities to few % for $10^{-4} < x < 10^{-1}$

Uncertainties much larger at highest x

Indirect sensitivity to gluon

 $\sim 3\%$ *experimental* uncertainty at low x

Very large gluon density at low $x \dots \mathsf{DGLAP}$

sufficient? ... unitarity? ... $gg \rightarrow g$? ...

More direct gluon constraints from other observables ... $\sigma({
m jets}),\,\sigma({
m charm}),\,F_L\sim\alpha_s\,xg(x)$ (LO QCD) e.g. HERA jet data sensitive up to $x\sim0.8$

Q² = 4.2 GeV² 1 O.5 H1 mb99 prel. $c \cdot x^{-\lambda} - y^2/Y_+ F_L$ $rac{1}{10^{-5}} 10^{-4} 10^{-3} 10^{-2}$

F_L Determinations

 $F_L \neq 0$ at $\mathcal{O}(\alpha_s^1)$ due to gluon radiation Ideal observable for gluon at lowest x, Q^2 beyond kinematic range of jet / charm data

$$ilde{\sigma} = F_2 - (y^2/Y_+) \, F_L$$

Sensitivity at highest $y \to 0.9 \quad (E_e' \to 3~{\rm GeV})$

 ${\cal F}_L$ determination spans 3 orders of magnitude in Q^2

Distinguishes between DGLAP and other approaches at low $\ensuremath{Q^2}$

 \dots but measurements of x dependence still required to see the full picture

 \dots Requires reduced E_p running

F₁ extraction from H1 data (for fixed W=276 GeV)

Charm and the Gluon

Charm from $\sigma(D^*)$ v NLO QCD $\otimes xg(x)$

Beautiful confirmation of gluon from scaling violations at 10% level

Sensitive to differences between fitted gluons

Theoretical uncertainties dominate $\to m_c, \mu_r, \mu_f$ ϵ_c , HF scheme

 $F_2^{car{c}}$ obtained with extrapolation in η, p_t (NLO HVQDIS)

Well above threshold, for massless charm, $\frac{F_2^{c\bar{c}}}{F_2} o \frac{e_c^2}{e_u^2 + e_d^2 + e_s^2 + e_c^2} = \frac{4}{10}$

Upgraded Silicon detectors, triggers → big charm future at HERA-II

$\begin{array}{c} \textbf{ZEUS} \\ \sigma(e^+p \rightarrow e^+ \ b\bar b \ X \rightarrow e^+ \ \mu^\pm \ Jet \ X) \\ \bullet \quad \text{ZEUS (prel.) 99-00} \\ - \quad \text{NLO QCD (HVQDIS)} \\ - \quad \text{NLO QCD (HVQDIS)} \\ - \quad \text{4.5 < m}_b < 5.0 \ GeV \\ 1/4(Q^2 + 4m_b^2) < \mu^2 < 4(Q^2 + 4m_b^2) \\ \hline \\ 10 \quad \text{10} \quad \text{2} \\ \hline \\ 10 \quad \text{3} \\ \end{array}$

Beauty Production

$$\sigma(b)$$
: $\sigma(c) \sim 1$: 200

- Understanding parton dynamics and multi-scale QCD
- Previously reported HERA, Tevatron beauty "anomalies" . . .

Measure using $b \to c \nu \mu$

Unfold from charm, uds using δ (Si) and $p_{_T}^{\mathrm{rel}}(\mu-jet)$

Compare with NLO QCD directly in measured range

Good agreement at large Q^2 , $p_{\scriptscriptstyle T}$

Data > theory at $Q^2=0$ (1.5σ)

Larger statistics and more Si in future $ightarrow F_2^{bb}$

Systematic Search for New Physics

Events

 10^{-1} 1 10 10^2 10^3 10^4

H1 General Search

How compatible is HERA data with the Standard Model overall?

Investigation of all multi-object final states with

$$j, e, \mu, \gamma, \nu \dots$$

... isolated

$$\dots p_T > 20 \,\mathrm{GeV}$$

$$...10^{\circ} < \theta < 140^{\circ}$$

23+2 channels!

Compare with Standard Model using Monte Carlos to $\mathcal{O}(\alpha_s)$ in QCD, with parton showers

Impressive agreement for most channels!

Looking in more Detail

For each channel, scan all possible connected regions in Σp_T and $M_{\rm all}$ to find most significant deviation

Use MC experiments to determine probability \hat{P} of finding a more significant excess somewhere in distribution

Most significant effect at large $\Sigma p_{\scriptscriptstyle T}$ for $\mu j \nu$ events

Probability for one of the 23 studied channels to give a more significant excess in $\Sigma p_T \sim 2\%$

Dedicated Studies of Isolated Leptons with Missing $p_{\scriptscriptstyle T}$

Study events containing an isolated high $p_{\scriptscriptstyle T}$ μ , e or τ , a high $p_{\scriptscriptstyle T}$ jet and missing $p_{\scriptscriptstyle T}$ Dominant Standard Model Process is W radiation

	Observation / Standard Model Prediction				
	H1 μ	H1 e	ZEUS μ	ZEUS e	ZEUS $ au$
$p_{_T}^{ m X} > 25~{ m GeV}$	6 / 1.44	4 / 1.48	5 / 2.75	2 / 2.90	2 / 0.20
$p_{_T}^{ m X} > 40~{ m GeV}$	3 / 0.55	3 / 0.54	0 / 0.95	0 / 0.94	1 / 0.07

Spectacular μ and e events observed by H1 Spectacular τ events observed by ZEUS

Many possible explanations eg FCNC top production with $t \to bW$... or just a fluctuation?

tau candidate, p = 39 GeV

HERA-II data will clarify

First Searches with HERA-II Data

H1 generic search repeated with $17~{\rm pb^{-1}}$ of HERA-II data

Overall good agreement with SM ... upgraded detector well understood

Events

Events with isolated leptons and missing $p_{\scriptscriptstyle T}$ continue to show up ...

	Obs. / SM Prediction		
	H1 μ	H1 e	
All $p_{_T}^{ m X}$	0 / 0.44	3 / 1.60	
$p_{_T}^{ m X} > 25~{ m GeV}$	0 / 0.29	2 / 0.34	

$$p_T^e=37\,\mathrm{GeV},\,p_T^{miss}=44\,\mathrm{GeV},\,p_T^X=29\,\mathrm{GeV}$$

ĮĮY.

Pentaquarks at HERA

HERA is a copious producer of strange and charm quarks

... Study spectroscopy of strange and charmed hadrons

Current hot topic:- PENTAQUARKS

Resonances in K^+n and K^0_sp reported by fixed target expts Minimal constituent quark composition $uudd\bar{s}$... $\theta^+(1540)$ pentaquark?

New evidence in $K^0_s p$ and $K^0_s \bar p$ from ZEUS Clean kaon selection with $K^0_s \to \pi^+\pi^-$ Ionisation energy loss ${\rm d}E/{\rm d}x$ assists proton track selection

Evidence for θ^+ Pentaguark

Clearest signal for $Q^2>20~{\rm GeV^2}$

$$1521.5 \pm 1.5 \text{ (stat.)}_{-1.7}^{+2.8} \text{ (syst.) MeV}$$

 $221 \pm 48 \text{ events } (4.6\sigma)$

Width consistent with resolution of $\sim 2~{
m MeV}$

First observation at colliding beam experiment

Suggestion of $\Sigma(1480)$ bumps?

No evidence for related states

$$(\theta^{++}?)$$
 in K^+p

 θ^+ isosinglet rather than isotensor?

Charmed Pentaquarks

If strange pentaquarks exist, what about charm? Replacing $\bar{s} \to \bar{c}$ could give $D^{(*)}p$ final states

 D^* mesons experimentally much easier than D mesons 'Golden' channel $D^{*-} \to \bar{D^0}\pi_s^- \to K^+\pi^-\pi_s^-$ & c.c. ... Use $m(K\pi)$ and $m(K\pi\pi_s) - m(K\pi)$ constraints Cuts on $p_{_T}(D^*)$, $\eta(D^*)$, $z(D^*)$ to improve purity

Use $\mathrm{d}E/\mathrm{d}x$ to select proton candidates based on proximity to K, π and p parameterisations

Evidence for a new state observed in both photoproduction and DIS . . .

Charmed Pentaquarks

Clear signal with mass $3099 \pm 3 \, (\mathrm{stat.}) \, \pm 5 \, (\mathrm{syst.}) \, \mathrm{MeV}$

Background well modelled by wrong charge $K^\pm\pi^\pm$ combinations and D^* Monte Carlo

 51 ± 11 events (6.2σ from change in fit likelihood with(out) signal component)

As in strange case, width compatible with experimental resolution ($\sim 7~{
m MeV}$)

Minimal constituent quark composition $uudd\bar{c}\dots$ strong evidence for a charmed pentaquark

Not yet confirmed ... no signal visible in preliminary ZEUS analysis

Ongoing analysis of HERA-I data

Ever stronger constraints on PDFs from inclusive data ($10^{-4} \lesssim x \lesssim 10^{-1}$)

Final states test QCD and give competitive information on gluon

Competitive searches . . . tantalising $l\nu j$ signals

Strong evidence for strange and charmed pentaquarks

• HERA-II has begun

First results obtained with polarised leptons

High luminosity \rightarrow improved high x, Q^2

Polarised leptons → chiral structure

Detector upgrades → precision HF era

Reduced $E_p \to {\rm high} \; x$, medium Q^2 , F_L

... watch this space ...

