The Neutrino Factory

motivation and machine

Contents

- Motivation: high-sens^{ty} studies of v-osc^{tions}
- Neutrino Factory machine: overview
- Accelerator R&D programme: highlights
- International Ionisation Cooling Experiment
- Conclusions

Motivation: headlines

- Neutrino oscillations established exp^{tly}
- Implications for particle physics:
 - Neutrino mass > 0
 - Neutrinos violate matter-antimatter symmetry?
 - New state of matter (Majorana?)
- Impact on astrophysics and cosmology:
 - Origin of matter (leptogenesis)
 - Dark matter
- Require dedicated expt programme to:
 - Search for matter-antimatter symm^y violation
 - Precisely measure parameters

Motivation: phenomenology

$$\begin{pmatrix} v_{\mathbf{e}} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \mathbf{Solar} \qquad \mathbf{eric} \qquad \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$

 $\sin^2\theta_{13}$ δ Δm^2_{23}

- Low-energy v_{μ} beam:
 - Water Cherenkov detector
 - Short (~300 km) baseline ideal
- Several experiments planned, or proposed:
 - Japan: T2K
 - US: NuMI off axis
 - CERN: SPL → Frejus

 $\sin^2\theta_{13}$

δ

 Δm^2_{23}

Neutrino Factory

- μ $\rightarrow \nu_{\mu} + \nu_{e}$
- $\blacksquare \ \mu^{+} \to \overline{\nu}_{\mu} \ ^{+} \nu_{e}$
- High-energy
 - Require 'tracking' detector
 - Long (~n × 1000 km) baseline indicated
- Possible sites:
 - BNL, CERN, FNAL ...
 - RAL

Features:

- Beam composition known
- Energy spectrum known
- Neutrino flux measured
- ▶ 1,000 times more intense than conventional beams

$$\mu^- \rightarrow e^- \nu_\mu \bar{\nu}_e$$

μ	
Disappearance	Appearance
$\stackrel{-}{\nu_e} \rightarrow \stackrel{-}{\nu_e} \rightarrow e^+$	$\overline{v}_e \rightarrow \overline{v}_\mu \rightarrow \mu^+$
	$\overline{\nu}_e \rightarrow \overline{\nu}_\tau \rightarrow \tau^+$
$\nu_{\mu} \rightarrow \nu_{\mu} \rightarrow \mu^{-}$	$v_{\mu} \rightarrow v_e \rightarrow e^-$
	$v_{\mu} \rightarrow v_{\tau} \rightarrow \tau^{-}$

Performance: unique

Performance: comparison

Performance: comparison

Neutrino Factory: the machine

5 MW proton driver developed from ISIS synchrotron

Proton driver test stand

RAL: 180 MeV H- linac

Radio-freq. quadrupole

Low energy beam transp^t

lon source

Proton driver test stand: chopper

Pion-production target

- Options:
 - Liquid metal mercury (currently preferred)
 - Solid metal:
 - Tantalum balls cooled with inert gas (CERN)
 - Solid band cooled by radiation (RAL)

Key problem: thermal shock

Target: liquid metal target exp^t

CERN-INTC-2003-033 INTC-I-049

23 October 2003

Updated: 31 Oct 2003

- 70° K Operation
- 15 T with 4.5 MW Pulsed Power
- 15 cm warm bore
- 1 m long beam pipe

Peter Titus, MIT

lonisation cooling

- Physics reach increases with neutrino flux
- Maximise stored muon intensity
- Implies:
 - Require to capture and store as many of the 'decay' muons as possible
 ⇒ Cool muon beam

Short muon lifetime requires novel technique: IONISATION COOLING

Ionisation cooling: technique

Principle

 $p_{\!t}$

Practice

Study II

International Muon Ionisation Cooling Expt (MICE):

- Design, build, commission and operate a realistic section of cooling channel
- Measure its performance in a variety of modes of operation and beam conditions

i.e. results will allow NuFact complex to be optimised

MICE: experiment

- Single particle experiment
- Cooling channel sandwiched between two 'identical' spectrometers

MICE: performance specification

$$\Rightarrow \sigma \left(\frac{\Delta \varepsilon}{\varepsilon_{in}} \right) << 0.1 \qquad Goal: \sigma \left(\frac{\Delta \varepsilon}{\varepsilon_{in}} \right) = 0.001$$

MICE: cooling channel

MICE: absorber/focus coils assbly

MICE: liquid hydrogen absorber

MICE Absorber Design

Plan: fabricate prototype III and test this year

Cavity fabrication in progress: ready for test in MTA (FNAL) 4th quarter 2004

MICE: RF power sources

RF amp test stand to be established at Daresbury Laboratory this year. Equipment to be shipped from LBNL for refurbishment.

MICE: spectrometer

- 4 T field, 40 cm bore
- Cryostat contains matching coils at each end
- Design allows for installation next to focus coils and tracker services

Genoa

MICE: tracker

Baseline

Scintillating fibre

- No active electronics/HV close to liquid hydrogen absorber
- No copper close to RF (low pickup)
- 350 μ fibre: 3-fold doublet; 0.35% X_0
- VLPC read-out: high quantumefficiency, high gain

Alternative/fallback

TPG – TPC with GEM readout

- Light gas $(0.15\% X_0)$
- Many points per track
- High precision track recⁿ possible
- Large integration time
- Effect of X-rays on GEMs

MICE: tr

Runs 202 - 231 correct gains used for each channel

MICE: particle identification

<u>Upstream</u>

- TOF: Milan: 70 ps resolution
 - Pld, trigger, timing with respect to RF phase
- Cherenkov: U.Miss: Pi/Mu separation

Downstream

- Cherenkov: Louvain: Mu/electron separation
- EM calorimeter: Rome III: Mu/elec. separatⁿ

MICE: implementation at RAL

MICE hall

MICE: layout

MICE INTERNATIONAL MUON IONIZATION COOLING EXPERIMENT

MICE: timescales

Conclusions

- Experimental study of neutrinos:
 - Origin of matter
 - Contribution to dark matter
 - New theory of fundamental particles
- Near/medium term programme:
 - Present generation: K2K, SNO, MINOS, CNGS
 - Next generation: J2K, NuMI off axis (+ ...)
- Opportunity for the future:
 - Establish NF R&D programme:
 - Key technologies: Proton driver, target, ionisation cooling – MICE
 - Develop conceptual design of entire facility
- Overall a fantastic programme!

Backup slides

J-PARC to Super-Kamiokande

- Phase I: 2007_(?)~201x
 - ~1MW 50GeV PS → 22.5kt detector (Super-Kamiokande)
 - $v_{\mu} \rightarrow v_{x}$ disapp., $v_{\mu} \rightarrow v_{e}$ app., NC measurement
- Phase II: 201x(?)~202y(??)
 - ~4MW 50GeV PS → ~1Mt detector (Hyper-Kamiokande)
 - CPV search, Proton Decay, . . .

J-PARC – the facility

J2KOA sensitivity

Motivation: phenomenology

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$

Target syst^m: π prodⁿ and capture

- Measurement of particle spectra:
 - HARP (CERN): E_p=2-15 GeV; range of materials

Data taking complete

Results will come 2004

Ionisation cooling

- lonisation cooling:
 - > Principle:
 - MuScat: Measure MCS distributions

Data taking complete

- Engineering demonstration:
 - Muon Ionisation Cooling Experiment (MICE)

Proton driver test stand: chopper

Chopper performance required

UKNF: 280 MHz, bunch spacing 3.57 ns

Switch between bunches

Partially chopped bunches a problem!

Proton driver test stand: chopper

RAL aspiration: switch in 2 ns and dissipate ~3-4 kW when "off"

2-stage process

Target: UKNF thermal-shock stdy

Simple explanation of shock waves

v is the velocity of sound in the target material.

Proton driver

- Specification:
 - Beam power 1 4 MW
 - Bunches ~few ns
 - Modest energy (5 25 GeV)
 - Schemes at AGS, CERN, FNAL, J-PARC
 - UKNF: RCS ISIS upgrade option
- Proton driver front end:
 - Challenge: high-quality pulsed beam
 - Common to CERN, FNAL, ISIS proton-driver upgrade plans
 - **EU FP6 'HIPPI' programme**
 - UKNF: Proton driver test stand development

A roadmap for neutrino physics?

- US: APS initiated 'Study IIa'
 - Considering super beams, beta beams and Neutrino Factory
- Europe: EMCOG initiating roadmap discussⁿ
 - Context: CERN SPL; Frejus Underground Lab.
 - FP6 Network: Beams for European Neutrino Experiments (BENE) to study:
 - Super beam; Beta beam; Neutrino Factory

UK:

- Present: SNO, MINOS
- Next generation: T2K, NOVA
- Future: Neutrino Factory R&D
- Time to work through arguments for ourselves!