Development of the CMS Silicon Strip Tracker Readout

Matthew Noy Imperial College London 7th April 2004, IOP, Birmingham

Introduction

- ◆LHC: CERN, Geneva.
 - To replace LEP (same tunnel) starts ~2007
 - 14 TeV P-P collisions (+ HI programme)
 - Design L $\sim 10^{34}$ cm⁻²s⁻¹
 - Bunch Crossing ~40MHz
- **CMS**:
 - 1 of 2 General Purpose detectors
 - Solonoidal design, v. dense 12kTonnes
 - Largest superconducting magnet
 - L~21m, D~14m
 - Higgs, SUSY, others

Silicon Microstrip Tracker

Cylindrical volume of ~25m³ is instrumented

■ ~210m² of Si

■ 10⁷ Si Microstrip Channels

length 5.4m, Diameter 2.4m

Analogue readout

No L1A decision involvement

On detector analogue buffering

APV25 (IC/RAL col.)

Expected rate ~100kHz

~80000 Analogue Optical readout links

Harsh environment

Operates in 4T magnetic field

Expected 10MRads integrated over lifetime

Everything on-detector is rad-hard

Control and Readout Architecture

- Control
 - Token ring arch.
 - Timing ~ 1ns (indv. ch.)
 - I²C on detector control
 - L1A ~ 100kHz
- Readout
 - 40MSs⁻¹
 - ~ 3GBs⁻¹FED⁻¹
 - Serialised: 256:1
 - Undersampling
 - Zero Suppression etc.

FED Architecture/Interfaces

First FED Prototype (01/03)

CMS Tracker FED Zoom in on FE Unit

"OptoRx" modules CERN project
Commercial Package with PIN Diode + Custom Analogue ASIC

FED Collaboration

- RAL responsibilities
 - Design/Layout
 - Complex analogue sec.
 - Firmware
 - Provide/test functionality
 - Low level software
 - Closely linked to firmware
 - Abstraction to middle UI
- Brunel responsibilities
 - software

- IC responsibilities
 - Modelling
 - Design sufficient?
 - Performance
 - Does it do what we need?
 - Software
 - Online interfaces
 - Test benches
 - Internal/Fed Tester

Development and Testing I

- Design Verification
 - Hardware (Hw)
 - Performance
 - Permits firmware
 - Has required interfaces
 - Firmware (Fw)
 - Performance
 - Provides functionality
 - Respects interfaces
 - Stable

- Software (Sw)
 - Robust
 - Efficient
 - Abstracts complexity to user interface
 - Interfaces/respects online environment
- Nearly there...
 - FED in use
 - Pisa, CERN (now),
 - Lyon (after Easter)
 - Beam Test (25ns)
 - June and Oct. 04.
 - LHC-like conds.

Timing Functionality (M. Noy)

- Timing control crucial
 - Time-of-flight delays
 - Fibre propagation differences
- Undersampling readout
 - Careful choice of sampling point

- Xilinx® Virtex II® FPGA DCM
 - Implementation of clock skewing
 - 96 independent ADC clock points

Development and Testing II

- ♦ Need ~500
- Have seen failures
 - Problem for similar ATLAS boards
 - BGA Soldering problems (batch 10.03)
 - Overcome with latest batch (03.04)
- Produced in industry
 - JTAG B.S. amongst others.

- Internal/Self Testing (M. Noy)
 - Significant software task
 - Development of robust algorithms
 - Abstract complexity
 - Simple interface
 - Pass/Fail decision
- Provides
 - Rapid, accurate feedback to assembly co.
 - Identification of:
 - Assembly mistakes
 - Component failures

Summary

- FED card
 - First off detector electronics
 - 9U VME form
 - 96 ADC ch, ~3GBs⁻¹
 - V. dense analogue sec.
 - 36 FPGAs (big, complex)
- Hw, Fw, Sw
 - High degree of development, testing required, and done
 - Robust, stable, nearly full functionality
 - Performant

- Production
 - Begin 2005
 - We will be ready.
- ♦ In Use
 - CERN, Pisa (now)
 - Lyon (soon)
 - Beam Test
 - June, Oct. 04.