
LHC-SC2-XX-2003

LHC Grid Computing Project DRAFT 1 / 42

LHC Gr id Comput ing
Pro jec t

A R D A P R O T O T Y P E – W O R K I N G D O C U M E N T

* * * D R A F T * * *

 Document identifier: xxx-xxx-xx-xxxx

 Date:

 Authors:

 Editors:

 Document status: DRAFT v0.11

Abstract: This working document is used to break down the high level services defined by
ARDA to actual components and tries to define the initial set of services provided by the prototype,
their interfaces, as well as the technology/systems exploited. The appendix maps these components
to existing implementations coming from Alien, EDG, and VDT.

The structure and initial AliEn input is taken from Chapter 5 of Draft v0.2 of the ARDA
document.

LHC-SC2-XX-2003

LHC Grid Computing Project DRAFT 2 / 42

Issue Date Comment

0.1 08-Dec-2003 First version (E.L.)

0.2 16-Dec-2003 Added more recent AliEn description and general description of services
from ARDA document (P.B.)

0.3 17-Dec-2003 Added replica management description from Peter K. (E.L.)

0.4 18-Dec-2003 Added R-GMA description from Steve F. (E.L.)

0.5 19-Dec-2003 Re-ordered sections (E.L.)

0.6 06-Jan-2004 Updated information section (SMF)

0.7 12-Jan-2004 Added description of AliEn I/O (P.B.)

0.8 12-Jan-2004
Added contributions from Francesco Prelz on the “WP1” Network Server
interface and the CE functionality that is obtained via CondorG/GRAM
(E.L.)

0.9 16-Feb-2004 Added initial data mgmt API from Peter K. (E.L.)

0.10 23-Feb-2004 Added more input on data mgmt from Peter K. (E.L.)

0.11 23-Feb-2004 Document re-structuring: previous work from Alien/EDG/VDT moved to
appendix (E.L.)

LHC-SC2-XX-2003

LHC Grid Computing Project DRAFT 3 / 42

CONTENT

1 INTRODUCTION ... 4

2 TERMINOLOGY.. 6
2.1 API DEFINITION ... 7
2.2 CONVENTIONS FOR DESCRIBING METHODS ... 7
2.3 ERROR HANDLING.. 7
2.4 POSIX ACLS .. 8

2.4.1 ACL Types .. 8
2.4.2 ACL Entries .. 8
2.4.3 Valid ACLs.. 9
2.4.4 Correspondence Between ACL Entries and File Permissions.. 9
2.4.5 Object Creation and Default ACLs... 9
2.4.6 Access Check Algorithm ... 9
2.4.7 Acl Text Forms ... 10
2.4.8 Rationale... 11
2.4.9 Changes to the File Utilities ... 11
2.4.10 Standards.. 11

3 GENERAL DECOMPOSITION.. 12
3.1 API AND GRID ACESS SERVICE ... 13

3.1.1 Data Services.. 14
3.2 AUTHENTICATION.. 15
3.3 AUTHORISATION SERVICE ... 15
3.4 INFORMATION SERVICE ... 15
3.5 GRID MONITORING .. 16
3.6 JOB MONITORING .. 16
3.7 JOB PROVENANCE.. 16
3.8 AUDITING SERVICE ... 16
3.9 ACCOUNTING SERVICE .. 16
3.10 SITE GATEKEEPER ... 17
3.11 COMPUTING ELEMENTS ... 17
3.12 STORAGE ELEMENTS ... 17

3.12.1 Management API.. 17
3.12.2 Posix I/O... 18

3.13 WORKLOAD MANAGEMENT... 21
3.14 DATA SERVICES... 21
3.15 DATA SCHEDULING.. 22

3.15.1 API Methods... 22
3.16 FILE CATALOGUE .. 27

3.16.1 Basic concepts .. 27
3.16.2 Functional concepts ... 28
3.16.3 Issues, Discussion... 29
3.16.4 API Definition .. 29

3.17 METADATA CATALOGUE ... 40
3.17.1 File-based Metadata API ... 40

3.18 PACKAGE MANAGER ... 40
4 REFERENCES .. 41

LHC Grid Computing Project DRAFT 4 / 42

1 INTRODUCTION

During the ARDA workshop held at CERN on Dec. 3rd/4th 2003 it was decided to use the component
breakdown and its mapping to AliEn contained in Draft v0.2 of the ARDA document as the working
basis for developing a concrete component description and implementation recommendation for the
ARDA prototype work.
The attendees of the ARDA workshop were:

• Predrag Buncic (AliEn)
• Miron Livny (Wisconsin/VDT)
• Francesco Prelz (INFN)
• Torre Wenaus (LCG AA)
• Peter Kunszt (CERN)
• Frederic Hemmer (CERN)
• Erwin Laure (CERN)
• Steve Fisher (CLRC)

Figure 1 presents the high level design that was developed during this workshop (original) based upon
the Alien design, Figure 2 presents an extract of that.

Figure 1 Original Design

LHC Grid Computing Project DRAFT 5 / 42

Figure 2 Transcript of Original Design

In the remainder of this document we further develop this design based on existing components from
Alien, EDG, and VDT, which are described in the appendix.

LHC Grid Computing Project DRAFT 6 / 42

2 TERMINOLOGY
The terminology listed here is a suggestion to be adapted throughout the ARDA prototype. The
acronyms and names suggested below have been suggested through HEPCAL and HEPCAL-II or
emerged as the established names in the Grid community in the last couple of years.

Logical File Name LFN Unique human-readable identifier of a Grid file.
Global Unique ID GUID Unique identifier by construction for a file. Think of it as

an inode.
Storage Resource Manager SRM A service providing a management interface to mass

storage.
Storage URL SURL URI of a file on an SRM or at generic storage. The URI

has the scheme ‘srm’ for files managed by an SRM and
‘sfn’ for other files.

Site A Grid Site is an administrative domain providing
computing and storage resources.

Virtual Organization VO A set of Grid users characterized by common usage and
access capabilities. Every Grid user belongs to at least
one VO.

Storage Element SE An SE provides storage to the Grid users. It usually has
an SRM interface, but it can also be a simple FTP server
or a SAN.

Catalog A catalog is a collection of data that is updateable and
transactional.

Dataset DS A dataset is a read-only collection of data.

At this point the suggestion is to introduce an explicit distinction between APIs intended for the
human Grid user and for the Grid middleware ‘user’. Humans have very different semantic
expectations of APIs than automated services, so the exposed APIs are different and have different
reasons to exist.

User-Domain API The API intended for the human user. This includes the API

provided to the application programmer, i.e. all high-level
application specific tools and interactive processes should be
implemented using this API.

Middleware-Domain API The middleware at this point is being defined as grid services in the
same grid layer, providing services to the end user by coordinating
low-level grid services and basic computing resources. The
Middleware domain API of a low-level service is being used by
other middleware to achieve its higher-level task.

Admin API This is also intended for the human user, but restricted to
administrators. It is often useful to explicitly specify that certain
APIs are only for administrative usage.

LHC Grid Computing Project DRAFT 7 / 42

2.1 API DEFINITION
In the API definitions below a set of needed functionalities and the way they are used in the scope of a
user and administrator of a Grid Service are defined. Since this specification pertains to the usable
prototype to be built, we decided to divide interface into three dimensions:

• Structures (objects) to be exposed by the API. Some of the structures must be well defined
to preserve semantics throughout the proposal, some may have placeholders to indicate
dependence on other services APIs.

• External API exposed to user,
• External Commands - exposed as a command shell, usable by user already in the first

iteration of prototyping. Usually wrappers of the equivalent Extenal User API calls or
aggregation of these.

Each of this dimensions subsequently covers following areas:
• Regular user operations
• Administrative operations
• Middleware API used usually by other services to be discussed in other documents

2.2 CONVENTIONS FOR DESCRIBING METHODS
We chose C as the language to describe the API because this is what we expect most of our users to be
familiar with. It is straightforward to imagine the analogous API in java and C++ or other languages
but this is the subject of a more detailed document once the API is more stable.
Each method is prefixed with grid_ in order to distinguish them from system calls. This is a C
specific notation, for java and C++ name-spacing is more appropriate.
The security model is still not fixed, so some details might change that respect. For the basic methods
described here we assume that the user has already authenticated to the service and that the service can
enforce the user’s access rights based on that authentication.

2.3 ERROR HANDLING
The error handling is uniform throughout all methods. Each method returns an error number. The error
message can be retrieved through the grid_strerror method.

• The error handling as described here is specific to C. It is possible to map error numbers and error
messages directly into exceptions which is a more common error reporting model for java and
C++.

• The error mechanism is that of the unix system calls. Neither AliEn nor EDG have had this
concept in their user API, however there have been many requests by the users of EDG to provide
these semantics. The advantage is that it is well-known and is a de-facto standard.

TheAPI tables in the rest of the document describe each API, its input value and possible errors. The
notes contain arguments why the call was chosen to be included in the specification and how it relates
to AliEn and EDG as well as known issues. The table below describes the method to retrieve the error
message based on an error number.

Name grid_strerror
Synopsis Retrieve string error message for a given error number.
Fields int errno Error returned by a call

LHC Grid Computing Project DRAFT 8 / 42

 char *buf Buffer to place error message in.
GRID_EINVAL Not a valid error number Errors
GRID_ERANGE Buffer not sufficient to store error message

Notes The behavior is identical to the unix system call strerror. The error numbers
and names are prefixed as well to distinguish them from the system errors.

2.4 POSIX ACLS
The following is taken from the Posix ACL man pages.

2.4.1 ACL Types
Every object can be thought of as having associated with it an ACL that governs the discretionary
access to that object; this ACL is referred to as an access ACL. In addition, a directory may have an
associated ACL that governs the initial access ACL for objects created within that directory; this ACL
is referred to as a default ACL.

2.4.2 ACL Entries
An ACL consists of a set of ACL entries. An ACL entry specifies the access permissions on the
associated object for an individual user or a group of users as a combination of read, write and
search/execute permissions.
An ACL entry contains an entry tag type, an optional entry tag qualifier, and a set of permissions. We
use the term qualifier to denote the entry tag qualifier of an ACL entry.
The qualifier denotes the identifier of a user or a group, for entries with tag types of
GRID_ACL_USER or GRID_ACL_GROUP, respectively. Entries with tag types other than
GRID_ACL_USER or GRID_ACL_GROUP have no defined qualifiers. The following entry tag types
are defined:

GRID_ACL_USER_OBJ The GRID_ACL_USER_OBJ entry denotes access rights for the file

owner.
GRID_ACL_USER GRID_ACL_USER entries denote access rights for users

identified by the entry's qualifier.
GRID_ACL_GROUP_OBJ The GRID_ACL_GROUP_OBJ entry denotes access rights for the file

group.
GRID_ACL_GROUP GRID_ACL_USER entries denote access rights for groups identified

by the entry's qualifier.
GRID_ACL_MASK The GRID_ACL_MASK entry denotes the maximum access

rights that can be granted by entries of type GRID_ACL_USER,
GRID_ACL_GROUP_OBJ, or GRID_ACL_GROUP.

 GRID_ACL_OTHER The GRID_ACL_OTHER entry denotes access rights for processes
that do not match any other entry in the ACL.

When an access check is performed, the GRID_ACL_USER_OBJ and GRID_ACL_USER entries are
tested against the effective user ID. The effective group ID, as well as all supplementary group IDs are
tested against the GRID_ACL_GROUP_OBJ and GRID_ACL_GROUP entries.

LHC Grid Computing Project DRAFT 9 / 42

2.4.3 Valid ACLs
A valid ACL contains exactly one entry with each of the GRID_ACL_USER_OBJ,
GRID_ACL_GROUP_OBJ, and GRID_ACL_OTHER tag types. Entries with GRID_ACL_USER and
GRID_ACL_GROUP tag types may appear zero or more times in an ACL. An ACL that contains
entries of GRID_ACL_USER or GRID_ACL_GROUP tag types must contain exactly one entry of the
GRID_ACL_MASK tag type. If an ACL contains no entries of GRID_ACL_USER or
GRID_ACL_GROUP tag types, the GRID_ACL_MASK entry is optional.
All user ID qualifiers must be unique among all entries of GRID_ACL_USER tag type, and all
group IDs must be unique among all entries of GRID_ACL_GROUP tag type.
The grid_acl_get_file() function returns an ACL with zero ACL entries as the default ACL of
a directory, if the directory is not associated with a default ACL. The grid_acl_set_file()
function also accepts an ACL with zero ACL entries as a valid default ACL for directories, denoting
that the directory shall not be associated with a default ACL. This is equivalent to using the
grid_acl_delete_def_file() function.

2.4.4 Correspondence Between ACL Entries and File Permissions
The permissions defined by ACLs are a superset of the permissions specified by the file permission
bits. The permissions defined for the file owner correspond to the permissions of the
GRID_ACL_USER_OBJ entry. The permissions defined for the file group correspond to the
permissions of the GRID_ACL_GROUP_OBJ entry, if the ACL has no GRID_ACL_MASK entry. If
the ACL has an GRID_ACL_MASK entry, then the permissions defined for the file group correspond
to the permissions of the GRID_ACL_MASK entry. The permissions defined for the other class
correspond to the permissions of the GRID_ACL_OTHER_OBJ entry.
Modification of the file permission bits results in the modification of the permissions in the associated
ACL entries. Modification of the permissions in the ACL entries results in the modification of the file
permission bits.

2.4.5 Object Creation and Default ACLs
The access ACL of a file object is initialized when the object is created with grid_mkdir(),
grid_register(), grid_symlink() functions. If a default ACL is associated with a directory,
the default ACL of the directory is used to determine the ACL of the new object, i.e. the new object
inherits the default ACL of the containing directory as its access ACL.
The new object is assigned an access ACL containing entries of tag types GRID_ACL_USER_OBJ,
GRID_ACL_GROUP_OBJ, and GRID_ACL_MASK. The permissions of these entries are set to the
permissions specified by the file creation mask.

2.4.6 Access Check Algorithm
A process may request read, write, or execute/search access to a file object protected by an ACL. The
access check algorithm determines whether access to the object will be granted.

1. If the effective user ID of the process matches the user ID of the file object owner, then if the
GRID_ACL_USER_OBJ entry contains the requested permissions, access is granted, else
access is denied.

2. Else if the effective user ID of the process matches the qualifier of any entry of type
GRID_ACL_USER, then if the matching GRID_ACL_USER entry and the
GRID_ACL_MASK entry contain the requested permissions, access is granted, else access is
denied.

LHC Grid Computing Project DRAFT 10 / 42

3. Else if the effective group ID or any of the supplementary group IDs of the process match the
qualifier of any entry of type GRID_ACL_GROUP, then if the GRID_ACL_MASK entry and
any of the matching GRID_ACL_GROUP group entries contain the requested permissions,
access is granted, else access is denied.

4. Else if the GRID_ACL_OTHER entry contains the requested permissions, access is granted.
5. Else access is denied.

2.4.7 Acl Text Forms
A long and a short text form for representing ACLs is defined. In both forms, ACL entries are
represented as three colon separated fields: an ACL entry tag type, an ACL entry qualifier, and the
discretionary access permissions. The first field contains one of the following entry tag type keywords:
user A user ACL entry specifies the access granted to either the file owner (entry tag type

GRID_ACL_USER_OBJ) or a specified user (entry tag type GRID_ACL_USER).
group A group ACL entry specifies the access granted to either the file group (entry tag type

GRID_ACL_GROUP_OBJ) or a specified group (entry tag type GRID_ACL_GROUP).
mask A mask ACL entry specifies the maximum access which can be granted by any ACL entry

except the user entry for the file owner and the other entry (entry tag type
GRID_ACL_MASK).

other An other ACL entry specifies the access granted to any process that does not match any
user or group ACL entries (entry tag type GRID_ACL_OTHER).

The second field contains the user or group identifier of the user or group associated with the ACL
entry for entries of entry tag type GRID_ACL_USER or GRID_ACL_GROUP, and is empty for all
other entries. A user identifier can be a user name or a user ID number in decimal form. A group
identifier can be a group name or a group ID number in decimal form. The third field contains the
discretionary access permissions. The read, write and search/execute permissions are represented by
the r, w, and x characters, in this order. Each of these characters is replaced by the - character to
denote that a permission is absent in the ACL entry. When converting from the text form to the
internal representation, permissions that are absent need not be specified.
White space is permitted at the beginning and end of each ACL entry, and immediately before and
after a field separator (the colon character).

2.4.7.1 Long Text Form
The long text form contains one ACL entry per line. In addition, a number sign (#) may start a
comment that extends until the end of the line. If an GRID_ACL_USER, GRID_ACL_GROUP_OBJ
or GRID_ACL_GROUP ACL entry contains permissions that are not also contained in the
GRID_ACL_MASK entry, the entry is followed by a number sign, the string "effective:", and the
effective access permissions defined by that entry. This is an example of the long text form:

user::rw-

user:lisa:rw- #effective:r—

group::r—

group:toolies:rw- #effective:r—

mask::r—

other::r--

2.4.7.2 Short Text Form
The short text form is a sequence of ACL entries separated by commas, and used for input. Comments
are not supported. Entry tag type keywords may either appear in their full unabbreviated form, or in

LHC Grid Computing Project DRAFT 11 / 42

their single letter abbreviated form. The abbreviation for user is u, the abbreviation for group is g, the
abbreviation for mask is m, and the abbreviation for other is o. The permissions may contain at most
one each of the following characters in any order: r, w, x. These are examples of the short text
form:

u::rw-,u:lisa:rw-,g::r--,g:toolies:rw-,m::r--,o::r--

g:toolies:rw,u:lisa:rw,u::wr,g::r,o::r,m::r

2.4.8 Rationale
IEEE 1003.1e draft 17 defines Access Control Lists that include entries tag type ACL_MASK, and
defines a mapping between file permission bits that is not constant. The standard working group
defined this relatively complex interface in order to ensure that applications that are compliant with
IEEE 1003.1 ("POSIX.1") will still function as expected on systems with ACLs. The IEEE 1003.1e
draft 17 contains the rationale for choosing this interface in section B.23.
In addition to these, the mode parameter is dropped for the grid adaptation since we will enforce a
default ACL at all times and in the client-service model the process ACL concept is dropped.

2.4.9 Changes to the File Utilities
On a system that supports ACLs, the file utilities ls, cp and mv change their behavior in the following
way:

• For files that have a default ACL or an access ACL that contains more than the three required
ACL entries, the ls utility in the long form produced by ls -l displays a plus sign (+) after the
permission string.

• If the -p flag is specified, the cp utility also preserves ACLs. If this is not possible, a warning
is produced.

• The mv utility always preserves ACLs. If this is not possible, a warning is produced.

2.4.10 Standards
The IEEE 1003.1e draft 17 ("POSIX.1e") document describes several security extensions to the IEEE
1003.1 standard. While the work on 1003.1e has been abandoned, many UNIX style systems
implement parts of POSIX.1e draft 17, or of earlier drafts.
Linux Access Control Lists implement the full set of functions and utilities defined for Access Control
Lists in POSIX.1e, and several extensions. The implementation is fully compliant with POSIX.1e
draft 17; extensions are marked as such.
See also http://www.guug.de/~winni/posix.1e/download.html

LHC Grid Computing Project DRAFT 12 / 42

3 GENERAL DECOMPOSITION

Information
Service

Authentication

Authorisation

Audit ing

Grid
Monitoring

 Workload
Management

Metadata
Catalogue

File
Catalogue

Data
Management

Comput ing
Elem entStorage

Element

Job
Moni tor

Job
Provenance

Package
Manager

Grid Access
Service

Accounting

Grid Access
Service

User
Application

Si te
Gatekeeper

7:
12:

5:

13:

8: 15:

11:

9:
10:

1:

4:

2:

3:

6:

14:

Figure 3: The interaction diagram of key Grid components for typical analysis use case

From the analysis of the AliEn architecture presented in the previous section we derive the

decomposition in the following key services (as depicted in Figure 3):
• API and corresponding Grid Access Service Component
• Authentication, Authorisation, Accounting and Auditing services
• Workload and Data Management Systems
• File and Metadata Catalogues
• Information service
• Grid and Job Monitoring services
• Storage and Computing elements
• Package Manager and Job provenance service.

In the following we give descriptions of the identified services, pointing out the interfaces they

provide as well as potential technologies/systems to be (re)used for the prototype implementation.

In the first phase of the prototype the focus will be on the following services:

• API and Access Service (Section 3.1)
• Authentication and Authorisation (Section 0 and 3.3)
• Information Service (Section 3.4)
• Site Gatekeeper (Section 3.10)

LHC Grid Computing Project DRAFT 13 / 42

• Computing Element (Section 3.11)
• Storage Element (Section 3.12)
• Workload Management (Section 3.13)
• Data Scheduling (Section 3.15)
• File Catalogue (Section 3.16)
• Metadata Catalogue (Section 3.17)

More Services will follow in the future phases of the project.

3.1 API AND GRID ACESS SERVICE
An ARDA API, shown in Figure 4, would be a library of functions used for building client
applications like graphical Grid analysis environments, e.g. GANGA or Grid Web portals. The same
library can be used by Grid enabled application frameworks to access the functionality of the Grid
services discussed in this document. The API is used also to access files available on the Grid as well
as to put user’s files onto the Grid. By files available on the Grid we understand those stored on one
or more Storage Elements and registered in the File Catalogue or replica location service.

API
(from User Application)

+ Authentication
+ Data Management

+ Grid Service Management
+ Job Control

+ Metadata Management
+ NewInterface

+ Posix I/O

SOAP
(from API)

Grid File
Access

(from API)

Us er
Application

POOL/ROOT/...
(from User Application)

API (OGSI User Interface Factory)

SE (POSIX I/O s ervice)

Figure 4: Grid API for user and Grid interactions

The Grid Access Service (GAS) is an example Service Component, and represents the user entry point
to a set of core ARDA services. When a user starts a Grid session, he establishes a connection with an
instance of the GAS created by the GAS Factory for the purpose of this session. The sequence of
interactions is illustrated in Figure 5. While its creation the user is authenticated and his rights for
various Grid operations are checked against the Authorisation Service. Thus the GAS is a stateful
service that keeps the user credentials and authorisation information. Many of the User Interface API
functions are simply delegated to the methods of the GAS. In turn many of the GAS functions are
delegated to the appropriate service.

LHC Grid Computing Project DRAFT 14 / 42

Figure 5: The sequence of interactions betweens ARDA services while application initiates connection
to the Grid

3.1.1 Data Services
As a part of the ARDA API, the Metadata Catalog, SE, Data Transfer and File Catalogue AP library
would expose functions used for building client applications including graphical or interactive Grid
analysis environments.
The Grid Access Service (GAS) is an example Service Component, and represents the user entry point
to a set of core ARDA services, exposing the API directly or indirectly.
Direct exposure is through client API bindings through java, C, C++ and scripting languages. Indirect
exposure is through a unix shell-like interface or eventually through graphical user interfaces, making
use of the underlying API.
In the table below there is a list of proposed commands to be implemented in the grid shell [need to
specify detailed semantics and error codes].

Command Description
ls List the contents of a directory, including metadata of files

(through extra options). There should be additional arguments to
give the offset and the number of files to return (for scrolling
purposes). Should be usable for all kinds of directories (virtual,
logical) as well as replicas.

mkdir Create a new directory
rmdir Remove an (empty) directory
getfacl List the ACLs applying to a file or directory
setfacl Set the ACLs of a file or directory
whereis Find the location of a file
tree Print directory tree starting from a given directory. Again give

offset and number of entries to return.
cp Copy files

LHC Grid Computing Project DRAFT 15 / 42

mv Rename files
rm Delete files and replicas
cd Change directory
pwd Print current working directory
touch Create an empty LFN
complete complete the given path (useful for shell completion)
locate Find a file in the catalog

3.2 AUTHENTICATION
The Authentication Service is responsible for checking user’s credentials. It can support different
authentication mechanisms. It collaborates with the Information Service in order to establish the user
identity.

3.3 AUTHORISATION SERVICE
Authorization Service provides information about the rights of an authenticated user to perform
various operations on the Grid.

3.4 INFORMATION SERVICE
The information service is a vital component of any grid. Most services will make use of it either as
publishers or consumers of information or both. Some services may simply add behavior to the
information service but more commonly they will merely use the information service. These services
may choose to hide the underlying information service, but this has the great disadvantage that it is
then hard to combine information from the different services. It is best to start with a single well
defined interface to the information system and only specialize when it proves necessary. It may be
useful to provide simpler APIs for some purposes.

Any information can be monitored provided it carries a timestamp. The mechanisms to move the
information around are the same. What makes monitoring systems distinctive is normally the GUIs
that are provided to visualize time sequenced data and to highlight problems. These GUIs are simply
clients of the information service.

Some information of interest changes rapidly and some much more slowly – however even with the
slowly changing information it is often necessary to know quickly if it does change. To avoid
publishing information that is only changing infrequently along with rapidly changing information is
inefficient. This requires thought when designing schemas. It is better to treat the information as two
or more entities with one to one relationships between them at any one time, rather than trying to
bundle together slowly and rapidly changing quantities.

We can consider some of the areas where information services appear:

1. There is the “MDS like” information service used to publish information about available
services.

2. The Job Provenance Service, which keeps track of the execution conditions for all the Grid
jobs could be implemented on top of the information service.

3. An Auditing Service provides the mechanism for all services to report their status and error
conditions. This allows Grid manager to monitor all exceptions in the system and to take
corrective action. This is simply publishing information using the information service.

LHC Grid Computing Project DRAFT 16 / 42

4. An Accounting Service could be defined to accumulate information about the use of the Grid
resources by the users and groups of users. Again this does not appear to require additional
functionality beyond that expected of an information service.

5. The Package Manager service gives information on the package names, versions and their
locations in data repositories, usually Storage Elements. This is once more just publishing
information – though perhaps a package manager might also actually manage the packages as
the name indicates.

6. Application monitoring and bookkeeping. Applications being executed as part of large
production runs can publish their status allowing production coordinators to keep things under
control.

3.5 GRID MONITORING
The Grid Monitoring Services provides dynamic information about the status of Grid resources:
computing, storage or network. This information is accumulated in the service repositories in order to
have a historic view of the resource status. The clients of the service are various Grid monitoring
visualisation tools as well as Workload Management Services that can optimise their scheduling
decisions based on the dynamic state of the Grid and/or on historical data of the resource usage.

3.6 JOB MONITORING
Job Monitoring is a service that wraps up the running job and provides information about job status
and progress. Upon request, it presents this information to other services and provides access to the job
specification (JDL, etc) as well as to temporary and final files produced by the job (stdout, stderr, log
files, other outputs). The Job Monitoring Service communicates with clients outside the Grid site via a
Site Gatekeeper running on the gatekeeper node.. The Gatekeeper Service is either a part of the
distributed Workload Management Service or an independent service.

3.7 JOB PROVENANCE
The Job Provenance Service is a specialized database to keep track of the execution conditions for all
the Grid jobs. This information is used to reproduce the execution environment for the verification and
debugging purposes and possibly for rerunning certain jobs. The Job Provenance Service does not
contain the information used in the data queries.
To be added at a later phase of the project.

3.8 AUDITING SERVICE
An Auditing Service provides the mechanism for all services to report their status and error conditions.
This allows Grid manager to monitor all exceptions in the system and to take corrective action.
To be added at a later phase of the project.

3.9 ACCOUNTING SERVICE
The Accounting Service accumulates information about the use of the Grid resources by the users and
groups of users. This information serves to prepare Grid usage statistics reports. It is used also in the
enhanced workload management with quotas and other policies taken into account.
To be added at a later phase of the project.

LHC Grid Computing Project DRAFT 17 / 42

3.10 SITE GATEKEEPER
The site gatekeeper is a proxy service that routes messages to/from the worker nodes of a site. It is
essential to allow worker nodes that don’t have outbound connectivity to communicate with other Grid
services. The site gatekeeper may also optimize the requests by e.g. message grouping or suppression
of redundant requests.

3.11 COMPUTING ELEMENTS
Computing Element (CE) is a service representing a computing resource. Its interface should allow
execution of a job on the underlying computing facility, access to the job status information as well as
high-level job manipulation commands. The interface should also provide access to the dynamic status
of the computing resource like its available capacity, load and number of waiting and running jobs.
The status information should be available on per VO basis or each VO allowed to the site has its own
instance of the service.

Figure 6: The sequence of interactions betweens ARDA services illustrating possible job execution

model

3.12 STORAGE ELEMENTS
The Storage Element (SE) is responsible for saving/retrieving files to/from the local storage that can
be a disk or a mass storage system. It manages disk space for files and maintains the cache for
temporary files.

3.12.1 Management API
The storage element management interface that we propose to adopt is that of the SRM. It is described
in great detail in the documents available at http://sdm.lbl.gov/srm-wg/documents.html.

LHC Grid Computing Project DRAFT 18 / 42

This management API is intended to be used mostly by administrators and as an internal API between
Grid Services.

3.12.2 Posix I/O
The interaction with the storage element should be transparent to the user through a virtual file system
with posix-like semantics. Most probably we have to relax the posix API and implement only a subset,
as it is done in many virtual file systems today. The final aim is to provide a grid virtual file system
such that the system calls can be used for handling files. There are existing approaches to provide such
a system, like AlienFS, GFAL, slashgrid, however none of them have been used and deployed in a
large scale Grid yet, so an evaluation needs to be done first. Below is an API specification that
provides the user with a posix-like interface with limited semantics, into which any of the above
existing technologies can be factored in. For the user it should not matter which technology will be
chosen as long as the functionality described below is achieved.

Name grid_filedesc_init
Synopsis Initialize a grid file descriptor
Fields grid_filedesc_t

*fd
File descriptor to initialize.

Errors GRID_ENULL The descriptor has not been allocated yet.
Notes This has no correspondence in AliEn or EDG. The structure is used to store

security information about the user, and session information for the Grid
services.

Name grid_open
Synopsis Open a grid file

char* path Full logical file path of the file to open
int flags The open flags. Accepted are:

GRID_O_RDONLY Request file for read only.
GRID_O_WRONLY Request file for write only.
GRID_O_APPEND For write, don’t overwrite but

append to file

GRID_O_CREAT For write, if file does not
exist, don’t come back with an
error but create the file.

GRID_O_EXCL If the file exists, when used
with GRID_O_CREAT, an
error will be returned.

Fields

grid_filedesc_t
*fd

The file descriptor being filled in.

GRID_ENULL The file handle structure being passed in is not
initialized.

Errors

GRID_ENEXIST Returned on read: there is no such entry in the
file catalog.

LHC Grid Computing Project DRAFT 19 / 42

GRID_EUNKNOWNSURL The SURL which is in the catalog is not
recognized by the SE. This is an inconsistency
between the catalog and the actual data on the
SE.

GRID_EACCES The user is not allowed to do read/write to the
path.

GRID_ENAMETOOLONG The pathname is too long.
GRID_EISDIR The pathname refers to a directory and not to a

file.
GRID_ENOTDIR A pathname component is in fact not a

directory.
GRID_ENOENT A pathname component (parent) does not exist.

GRID_EEXIST The pathname already exists and
GRID_O_CREAT and GRID_O_EXCL were
used.

 GRID_EDENIED The user is not allowed to unregister.
Notes This corresponds to the open() call in AliEn and has no direct

corresponding call in EDG, where this was done in a combination of
replica manager/broker info (lookup of LFN) and system setup (NFS
mount).
Note also that for the time being there is no read-write mode. This is due to
the distributed nature of the system and a simplification in semantics, taken
from AliEn.

Name grid_close
Synopsis Open a grid file
Fields grid_filedesc_t

*fd
File descriptor to close.

Errors GRID_EBADF Not a valid file descriptor.
Notes This corresponds to the close() call in AliEn and has no direct

corresponding call in EDG.

Name grid_read
Synopsis Read from a grid file. Reads are sequential.

grid_filedesc_t
*fd

File descriptor. The file has to be opened for
read.

Fields

const void* buf The buffer to be read to.

 size_t count The amount of bytes to be read.

 size_t *count The amount of bytes actually read.

Errors GRID_EBADF Not a valid file descriptor.

LHC Grid Computing Project DRAFT 20 / 42

 GRID_EINVAL The file descriptor given is attached to a file
that cannot be written.

 GRID_EPIPE While writing, the connection to the service
hosting the file was lost.

Notes This corresponds to the read() call in AliEn and has no direct
corresponding call in EDG.

Name grid_write
Synopsis Write into a grid file. Writes are sequential.

grid_filedesc_t
*fd

File descriptor. The file has to be opened for
write.

const void* buf The buffer to be written.
size_t count The amount of bytes to be written.

Fields

size_t *count The amount of bytes actually written.
GRID_EBADF Not a valid file descriptor. Errors
GRID_EINVAL The file descriptor given is attached to a file

that cannot be written.
 GRID_EPIPE While writing, the connection to the service

hosting the file was lost.
Notes This corresponds to the write() call in AliEn and has no direct

corresponding call in EDG.

Name grid_fseek
Synopsis Position the read stream. Does not work for writes, works only forward for

reads.
grid_filedesc_t
*fd

File descriptor. The file has to be opened for
read.

Fields

size_t count The amount of bytes to skipped.
GRID_EBADF Not a valid file descriptor. Errors
GRID_EINVAL The file descriptor given is attached to a file

that cannot be read (ie file has been opened for
write).

 GRID_EPIPE While seeking the connection to the service
hosting the file was lost.

Notes This has no corresponding call in AliEn and has no direct corresponding
call in EDG.

LHC Grid Computing Project DRAFT 21 / 42

Name grid_stat
Synopsis Return the status of a grid file based on its logical file name.

char *filename File descriptor. The file has to be opened for
write.

Fields

struct
grid_fstat_t*
statbuf

The filestat structure to be filled. It is described
below.

GRID_ENEXIST There is no such entry in the file catalog.
GRID_EACCES The user is not allowed to do read this

information.
GRID_ENAMETOOLONG The pathname is too long.
GRID_ENOTDIR A pathname component is in fact not a

directory.

Errors

GRID_ENOENT A pathname component (parent) does not exist.
Notes This corresponds to the stat() call in AliEn and has no direct corresponding

call in EDG.

Note: All of the file system commands manipulating directories are described under the File Catalog
component.

3.13 WORKLOAD MANAGEMENT
The Workload Management Service (WMS) receives the workload instructions from the users in the
form of jobs. It is responsible for selecting the appropriate Computing Elements (CE) where the job
can be run. If no CE is able to run the job, some preparatory actions can be undertaken, e.g. bringing
some of the input data to a near SE. The WMS can modify the job descriptions, e.g. generate subjobs
in order to optimise the overall job execution. The WMS assigns an identifier to the accepted jobs that
can be used later to interrogate the job status. The WMS provides accounting information upon the job
execution to the Accounting Service and can be implemented as a compact or a distributed service, i.e.
having internal distributed components

3.14 DATA SERVICES
This section gives an overview of all data related services in ARDA. The main services that relate to
file access in ARDA are the File Catalog, Data Management and Storage Element. Metadata Catalogs
are mostly also in this area, although this depends on how ‘metadata’ is defined. We will define it
through the specification in great detail below. Also of relevance are the Authentication and
Authorization as well as the Access Service components. And all services need to provide Auditing
and Accounting so they are discussed here as well to a limited extent. The Package Manager might
make use of the other service components to achieve its task.
The granularity of the data is on the file level. The idea is to give the user the illusion of a global file
system (which is specific to his VO). There may be a client application that can look like a shell (as in
AliEn) which can seamlessly navigate in this virtual file system, listing files, changing directories, etc.

LHC Grid Computing Project DRAFT 22 / 42

To read and write files is possible through a posix-compliant I/O. In terms of access control, the
suggestion is to adopt posix ACLs. They have well-defined semantics and are already implemented in
several file systems today. The many different flavours of mass storage systems should be hidden
behind the very same posix-compliant I/O. However, the semantics of reads and write will be affected
by having an MSS backend: there may be substantial latencies for reads and many more failure modes
for write, so the number of errors and messages is larger than for a conventional file system. The
components in Figure 3 covering these issues are the Storage Element (providing the MSS backend
abstraction, virtual file system), File Catalog (providing the global logical file system view for the
user), and of course the security components (Authentication, Authorization).
In a distributed environment, there will be many replicas (managed copies) of the user’s files stored at
different physical locations. The user does not necessarily needs to be aware of this fact, however the
capabilities for controlling the replica placement need to be available. This is covered by the Data
scheduling component which provides file placement capabilities.
The way the files are found and selected is not necessarily by name but by attributes, and this is where
the Metadata Catalog component comes into play. However, this can be very application (and VO)
specific, so the interface we specify in this document is a very simple one that can be implemented on
top of existing application metadata services such that they can be used from within the grid
environment. It is this mechanism that enables the concept of virtual datasets as well

3.15 DATA SCHEDULING
The Data scheduling component as defined in the ARDA RTAG document has two major
components: The Data Transfer service and the Data Placement service. The transfer service responds
to user requests to transfer files between two SEs. The placement service is an autonomous service
that will initiate transfer (i.e. replication of files) based on access patterns and job placement
considerations.
The Data Transfer service maintains and manages a queue of pending transfers across its allocated
bandwidth at a given site. A user can request the replication of a given file from one site to another if
he knows the file to exist at a given source and has proper access rights at the given destination.
However, if the source is not known, the Data Placement service may find the ‘best’ source based on
network monitoring to be used.

3.15.1 API Methods
The transfer scheduling and replication methods are described in detail below. The transfer scheduling
is based on the AliEn transfer services described below. The replication APIs are based on the EDG
replica manager.Data Transfer service

3.15.1.1 Data Transfer service
This does not include registration in the catalog. Each data transfer service is associated with a site.
Just like the SE, the data transfer service should be able to serve more than one virtual organization.
The concept is that the data transfer service manages transfers to and from a given site. The benefit of
such a service is that identical file transfers are not initiated unnecessarily and that it provides some
implicit network congestion control for this kind of operations.

Name grid_schedule_transfer
Synopsis Put a new transfer request on the file transfer queue. This is a nonblocking

call.
Fields char * sourceURL The source file name. This needs to be a

valid SURL recognized by an SE or a http,
ftp or gsiftp URL.

LHC Grid Computing Project DRAFT 23 / 42

char * destURL The destination file name. This also is a
SURL recognized by an SE or a ftp or gsiftp
URL.

grid_stid_t *id The scheduled transfer id returned.
GRID_EBADSURL Not a valid SURL for either source or dest. Errors
GRID_EACCESS The user is not allowed to write / read the

file.
Notes

Name grid_cancel_transfer
Synopsis Cancel a transfer request. This will simply remove an entry from the queue.

If the transfer is already in progress, this has no effect.
Fields grid_stid_t id The transfer id to be cancelled.

GRID_EBADTRANSID Not a valid transfer id (anymore). Errors
GRID_EACCESS The user is not allowed to cancel the transfer.

Notes

Name grid_transfer_status
Synopsis Show the status of the transfer.

grid_stid_t id The transfer id to listed. Fields
int *stat The status. It can be GRID_ST_PENDING,

GRID_ST_TRANSFERRING,
GRID_ST_CANCELLED,
GRID_ST_DONE.

GRID_EBADTRANSID Not a valid transfer id. Errors
GRID_EACCESS The user is not allowed to read the status.

Notes

Name grid_transfer_list
Synopsis Show the list of scheduled transfers. Only those transfers are listed that the

user is allowed to see. This call can be called repeatedly to get the next
entry from the stream. It will return GRID_EEOF if there are no more
entries left to list.
grid_stid_t *id The transfer id of the entry. Fields
char *source The source to be transferred from. This is a

buffer which should be allocated by the user
before calling the method.

LHC Grid Computing Project DRAFT 24 / 42

char *dest The destination to transfer to. This is also a
buffer, just like source.

Int *stat The status. It can be GRID_ST_PENDING,
GRID_ST_TRANSFERRING,
GRID_ST_CANCELLED,
GRID_ST_DONE.

GRID_EOF This is not really an error, it indicates that
there are no more entries to be retrieved. The
source and dest buffers and id, stat fields are
unchanged if EOF is reached.

GRID_ERANGE The source or dest buffer is not big enough to
store the entry. There is a field
GRID_NAME_MAX that defines the maximal
name length.

Errors

GRID_EACCESS The user is not allowed to list the status.
Notes

3.15.1.2 Data Placement service
This service API enables the user to create new replica instances. It does involve registration in the
catalog.

Name grid_create_replica
Synopsis Create a replica at a given location. This will submit and monitor a file

transfer to the file transfer service and update the file catalog accordingly
upon successful replication. This is a blocking call until a replication and
registration is complete.
char *path The full logical file name path of the file of

which a new replica is to be created.
Fields

char* destination The destination to replicat to. This can be a
fully qualified SURL or just the SE to
replicate to.

GRID_EEXIST There is already a replica at the given
destination.

GRID_ENEXIST The path does not exist in the catalog.
GRID_EACCESS The user is not allowed to create a new

replica at the given destination.
GRID_ENAMETOOLONG The pathname is too long.

Errors

GRID_ENOENT A pathname component (parent) does not
exist.

Notes The source to replicate from will be chosen by the service. Trivially it will choose
a file from the local store if one is available, otherwise it chooses one at random.
This corresponds to the createMirror call in AliEn and the replica manager
replicateFile command in EDG. In EDG the source was chosen based on some
networking monitoring metrics.

LHC Grid Computing Project DRAFT 25 / 42

Name grid_put_file
Synopsis Put a new file into the grid explicitly. The source file can exist either on the

local file system or is accessible through one of the http, ftp, gsiftp
protocols. This is a blocking call for local files and nonblocking for other
files where the transfer service will be used to perform the put. This call
also has a bulk operation corresponding call, grid_bulk_put_file.
char *path The full logical file name path of the file that

should exist from now on in the grid.
Fields

char *sourceURL The source URL. This has to be a valid url
with schema file, http, ftp, gsiftp.

 char *destSURL This is optional and can be left NULL, in
which case the service will choose a name to
put the file to on the local SE. Otherwise it
tries to create the file using the given SURL.

GRID_EEXIST There is already a file in the catalog with the
given path.

GRID_ENEXIST The source does not exist or is not accessible.
GRID_EACCESS The user is not allowed to create a new file in

the given path or the given destSURL.
GRID_ENAMETOOLONG The pathname is too long.

Errors

GRID_ENOENT A pathname component (parent) does not
exist.

 GRID_EINVSURL The SURL for destination given is invalid
 GRID_ESURLEXIST The dest SURL already exists on the SE
Notes This corresponds to the copyAndRegister call in the EDG replica catalog.

Name grid_bulk_put_file
Synopsis Put a set of new files into the grid. The set of files is defined in the XML

string. It may contain also metadata that is to be added to each file as well
as ACLs.
char *xml The XML string specifying the files and all

attributes thereof to be put. [to be detailed]
int policy Flags to specify the failure policy. The

options are:
GRID_FAIL_ANY Fail for all if any of the
files cannot be created.
GRID_FAIL_ALL Fail only if none of the
files can be put. The result string will contain
eventual individual failures.

Fields

char *resultXML Report on the bulk operation. This is also an
XML string, containing the pathnames and
individual return codes. The return codes are
listed below.

LHC Grid Computing Project DRAFT 26 / 42

GRID_EEXIST There is already a file in the catalog with the
given path.

GRID_ENEXIST The source does not exist or is not accessible.
GRID_EACCESS The user is not allowed to create a new file in

the given path or the given destSURL.
GRID_ENAMETOOLONG The pathname is too long.

Errors

GRID_ENOENT A pathname component (parent) does not
exist.

 GRID_EINVSURL The SURL for destination given is invalid
 GRID_ESURLEXIST The dest SURL already exists on the SE
Notes This corresponds to the bulkCopyAndRegister call in the EDG replica catalog. It

is first checked whether the user has the right to create all logical names in the
catalog before starting the copy operations through the file transfer service.

Name grid_delete_replica
Synopsis Remove a replica from a given location. This will submit a removal request

to the SE and remove the entry from the catalog.
char *path The full logical file name path of the file of

which a replica is to be removed.
Fields

char* replica The replica to remove. This can be a fully
qualified SURL or just the SE to remove
from.

GRID_ENEXIST There is no such path in the catalog.
GRID_EINVAL There is no such replica to delete.
GRID_EACCESS The user is not allowed to create a new

replica at the given destination.
GRID_ENAMETOOLONG The pathname is too long.
GRID_ENOENT A pathname component (parent) does not

exist.
GRID_EINVSURL The SURL is invalid.

Errors

GRID_EFAIL The SURL could not be removed from the
SE. This occurs if there is an inconsistency
between the catalog and the SE. The catalog
entry is removed!

Notes It is first checked whether the user is allowed to perform the operation on the
given SURL. The entry is removed from the catalog first, and only if that
operation is successful will a removal request be made at the SE (which should
not but can fail with GRID_EFAIL). If this was the last replica in the catalog, the
logical entry is being kept, but it will have no actual replicas associated with it and
the file size is reset to 0.

LHC Grid Computing Project DRAFT 27 / 42

3.16 FILE CATALOGUE
The file catalog is the starting point for file-based data management. In the Grid the user identifies her
files by logical file names (LFNs). The LFN is the key by which the Grid services locate the actual
replicas of the files. The replicas are identified by SURLs, i.e. each replica has its own SURL,
specifying implicitly which SE needs to be contacted to extract the data. Usually, users should not
have to deal with SURLs, in all their scope the only names they should need to use are LFNs. The
Grid should provide the look and feel of a single file system.
To give this illusion, the Grid data management middleware has to keep track of SURL - LFN
mappings in a scalable manner. The Grid File Catalog provides the logical file system view to the
user, with all the functionality to group files into directories and to provide access control through
posix ACLs. The other major task of the Grid File Catalog is to provide the mapping of the replicas.
That part is also often referred to as replica catalog.

3.16.1 Basic concepts
We define the terms:

• SURL Storage URL: This is a physical instance of a file replica. Also referred to as the
Physical File Name (PFN).

• LFN Logical File Name: A logical (human readable identifier) for a file.
• GUID Globally unique ID: A logical identifier guaranteed unique by construction, regardless

of where it is produced.

The mapping we consider is 1 LFN to 1 GUID to many SURL. It is a requirement of the LFN that it
be unique. The namespace of the LFN is a directory structure, e.g.
/grid/atlas.lhc.org/production/run/07/123456/calibration/cal/cal-table100

Figure 7: The mapping model. The introduction of the GUID (which is entirely kept internal)
allows to distribute the catalog across the wide area and to catch accidental duplicate LFNs
should they occur.

We define the LFN here to be the primary logical filename for that logical file. This full name must be
unique within a VO and should be accessible to the entire VO. Secondary logical references are
discussed below. The internal GUID should never be exposed to the users, who will usually only
see the human readable LFN. The purpose of the internal GUID is to allow recovery in the case of
clashes where two files are given the same LFN. An example case where this might occur is when a
batch farm producing some output is disconnected from the wide area network and registers a new file
(and a new LFN) in its Local File Catalog. Upon reconnection, the Local File Catalog tries to resync
with the rest of the world, and finds the LFN already registered. The clash can be dealt with by some
configurable policy, the easiest of which would be to mail an administrator. The GUID then gives a
guaranteed-unique handle that the administrator can use to reference the file while dealing with the
clash. The typical resolution would be to assign the file a different LFN. In general, the application

GUID

SURL

SURL

SURL

LFN

LHC Grid Computing Project DRAFT 28 / 42

should take reasonable steps to ensure that the LFN is unique; the process above is only for recovery
purposes.
The SURL is what the storage resource (SE) uses to access the file. In the application discussed here,
users should not see the SURL, only the logical filename and its directory structure. The rest of the
discussion in this note pertains only to logical directories, so SURLs and physical files will not be
discussed further.
For the logical side, the analogy from the UNIX file system is: The GUID is like the inode. The
logical filename is a unique hard link to that inode.

3.16.2 Functional concepts
We define the concept of a logical directory. The directory is just as in a normal file system a list of
files and other directories. It can be navigated in the same manner. The full logical filename path
contains also implicitly directory structure that can be navigated in such a manner to reference all the
logical files for a given VO. The grid middleware dereferences the logical filename to the SURLs, the
physical instances of the file. The posix ACL semantics are also enforced through the catalog.

3.16.2.1 Metadata
In the proposed specification the Metadata Catalog module may be direcly queried through the File
Catalog. The Metadata Catalog has a specific interface which returns a set of LFNs (limited to a
maximal size) for a query. The schema and content of the Metadata Catalog needs to be known by the
user issuing the query but is not specified by the system. We only specify the generic metadata
interface and its error modes. This interface is then used by the File Catalog and is implicitly exposed
through the metadata operations, which also involves virtual directories.

3.16.2.2 Logical directory
A new logical directory can be created through a simple API call (mkdir, see below). A user can copy
logical files from other logical directories in to their own directory. Symbolic directory links are
possible to other directories.

3.16.2.3 Read-only metadata defined virtual directory
This is a logical directory created from a metadata query (see mkdir API section). A user defines a
metadata query whose output is a set of logical files that are then made accessible through the virtual
directory as symlinks. Only a limited set of operations are available in such directories. We do not
foresee the possibility to have subdirectories in virtual directories for example. Also, adding files to a
virtual directory is only possible by refreshing the original query.
Virtual directories can be created with the grid_mkvdir command by specifying a metadata query. The
result set is displayed as an enumerated set of symlinks in the directory. The query can be refreshed
explicitly by issuing the grid_vdir_refresh command. The contents of the directory do not change
before such a refresh operation is issued. Virtual directories have a well-defined maximal size which
cannot be exceeded.

3.16.2.4 Symlinks
Similarly to symbolic links in Unix, LFN may have a nonzero number of symlinks. Symbolic links
however have always be given using absolute paths. It has the same semantics as the unix filesystem
symlinks, i.e. they are weak and could point to non-existing LFNs. Any operation on the target LFN
does nothing to update the link, symbolic links can create cycles, etc.

3.16.2.5 HEPCAL Datasets
The HEPCAL DataSet concept maps to a logical directory which has associated metadata linked to it
through the Metadata Catalog. The virtual data concept maps to the virtual directories.

LHC Grid Computing Project DRAFT 29 / 42

3.16.3 Issues, Discussion

3.16.3.1 Security
By imposing posix ACLs on the filesystem the security semantics are rather straightforward. This
should also help in avoiding concurrency issues when writing into the catalog since each user will
have only limited access rights in the LFN namespace and there should be only a finite set of
administrators per VO who have full access rights for all of their LFN tree. The probability of two
users with the same access rights to write into the catalog in the same directory in a distributed system
is therefore low.

3.16.3.2 Logical file namespace
The logical namespace needs to be unique. If we really want to exploit the filesystem semantics, it
would be desirable to agree on some properties of the logical file names, as it is the case also for
distributed file systems. If we take AFS as an example, it declares its root to be /afs followed by the
AFS cell name. A similar idea could be applied to the Grid File Catalog namespace, i.e. start with /grid
followed by the virtual organization name. Below this namespace each VO can define their own
structure to prevent conflicts.

3.16.3.3 Scalability vs. Consistency
The File Catalogs that have been deployed to date are all deployed centrally and therefore are a single
point of failure. The central catalog model has obviously excellent consistency properties (concurrent
writes are always managed at the same place) but it does not scale to many dozens of sites. There are
two possibilities to solve this issue:

1. Database Replication. The underlying database is replicated using native database replication
techniques. This however means a lock-in to a vendor-specific solution. Currently commercial
database vendors like Oracle provide multi-master database replication options which could be
exploited, open-source solutions are not really mature yet, so this option has its limitations.

2. Lazy database synchronization exploiting the specific semantics of the File Catalog using
reliable messaging to propagate the updates. Reliable messaging technologies are available
(just like database technologies under point 1) both commercially and in the open source
domain. The File Catalog semantics are rather simple and very specific for catalog write
operations, so that every time a local write operation occurs, it can be distributed through a
reliable message queue to all remote catalogs. This way one can have the same effect as under
solution 1 above but without the need for vendor lock-in.

The proposal is to go with solution 2 with solution 1 as a fall-back option. Consistency might be
broken in both models i.e. it is possible to register the same LFN in two remote catalogs at the same
time such that a conflict will occur. The reconciliation techniques apply in both cases, however for
case 2 we can be specific to the semantics of the system and exploit the uniqueness of the GUIDs.

3.16.4 API Definition

3.16.4.1 Basic types
C data types were chosen for interface definitions but with the underlying assumption that all of them
could be mapped to XMLSchema 1.0 types as defined in http://www.w3.org/TR/xmlschema-2/#built-
in-datatypes, including complex structures obeying this standard.

3.16.4.1.1 Logical directory methods
These methods enable interaction with the logical namespace of the catalog.

Name grid_readdir
Synopsis Return the next entry in the directory stream.

LHC Grid Computing Project DRAFT 30 / 42

char*
directory

Directory to list Fields

char* buf Buffer to place next entry in.
GRID_EBADF Not a valid directory
GRID_EOF This is not really an error, it indicates that there are

no more entries to be retrieved or that the directory
is empty. The buffer is unchanged if EOF is
reached.

Errors

GRID_ERANGE The buffer is not big enough to store the entry.
There is a field GRID_NAME_MAX that defines the
maximal name length.

Notes The behavior is similar but not identical to the posix readdir system call.
This corresponds to the readdir() call in AliEn and has no correspondent in
EDG.

Name grid_mkdir
Synopsis Create a new logical directory.
Fields char* directory Full path of the directory to create

GRID_EEXIST There is already an entry in the catalog with
this name (either file or directory)

GRID_EACCES The parent directory does not allow the user to
create a directory (see posix acl semantics
below)

GRID_ENAMETOOLONG The pathname is too long.

Errors

GRID_ENOENT A pathname component (parent) does not exist.
Notes This corresponds to the MkDir() call in AliEn and has no correspondent in

EDG.

Name grid_rmdir
Synopsis Delete a logical directory.
Fields char* directory Full path of the directory to delete

GRID_EEXIST There is already an entry in the catalog with
this name (either file or directory)

GRID_EACCES The parent directory does not allow the user to
remove a directory or directory not readable
(see posix acl semantics below)

GRID_ENAMETOOLONG The pathname is too long.
GRID_ENOENT A pathname component (parent) does not exist.
GRID_ENOTEMPTY The directory is not empty

Errors

GRID_ENOTDIR The path is actually not a directory

LHC Grid Computing Project DRAFT 31 / 42

Notes This corresponds to the RmDir() call in AliEn and has no correspondent in
EDG.

3.16.4.1.2 Virtual directory methods

Name grid_mkvdir
Synopsis Create a new virtual directory.

char* directory Full path of the directory to create Fields
char* queryXML The XML which defines the query and the

query and directory metadata. It contains the
directives for example about the maximal
cardinality of the result, eventual offset, etc.

GRID_EEXIST There is already an entry in the catalog with
this name (either file or directory)

GRID_EACCES The parent directory does not allow the user to
create a directory (see posix acl semantics
below)

GRID_ENAMETOOLONG The pathname is too long.

Errors

GRID_ENOENT A pathname component (parent) does not exist.
 GRID_EBADQUERY The query has failed to create the virtual

directory.
Notes This has no corresponding call in AliEn or EDG.

Name grid_vdir_refresh
Synopsis Refresh a virtual directory.
Fields char* directory Full path of the directory to refresh.

GRID_ENEXIST There is no such entry in the catalog.
GRID_EACCES The user is not allowed to refresh the virtual

directory.
GRID_ENAMETOOLONG The pathname is too long.

Errors

GRID_ENOENT A pathname component (parent) does not exist.
 GRID_EBADQUERY The query has failed to update the virtual

directory.
Notes There is no corresponding call in AliEn or EDG.

Name grid_rmvdir
Synopsis Remove a virtual directory.
Fields char* directory Full path of the directory to remove.

Errors GRID_ENEXIST There is no such entry in the catalog.

LHC Grid Computing Project DRAFT 32 / 42

GRID_EACCES The user is not allowed to remove the virtual
directory.

GRID_ENAMETOOLONG The pathname is too long.

GRID_ENOENT A pathname component (parent) does not exist.
Notes There is no corresponding call in AliEn or EDG.

3.16.4.1.3 Security methods
[to be completed in detail, including structures]
grid_acl_set_file
grid_acl_get_file

grid_acl_copy_entry, grid_acl_create_entry, grid_acl_delete_entry,
grid_acl_get_entry, grid_acl_valid

grid_acl_add_perm, grid_acl_calc_mask, grid_acl_clear_perms,
grid_acl_delete_perm, grid_acl_get_permset, grid_acl_set_permset

grid_acl_get_qualifier, grid_acl_get_tag_type, grid_acl_set_qualifier,
grid_acl_set_tag_type

grid_acl_copy_entry, grid_acl_copy_ext, grid_acl_from_text,
grid_acl_to_text, grid_acl_size

3.16.4.1.4 Logical files

Name grid_create
Synopsis Create a new logical file name entry without actual associated data.
Fields char* path Full logical file path of the file to register

GRID_EEXIST There is already an entry in the file catalog
with this name

GRID_EACCES The parent directory does not allow the user to
write a new entry here.

GRID_ENAMETOOLONG The pathname is too long.

Errors

GRID_ENOENT A pathname component (parent) does not exist.
Notes This does not correspond to anything in AliEn or EDG.

Name grid_delete

LHC Grid Computing Project DRAFT 33 / 42

Synopsis Delete logical file name entry. This will not remove the files from storage,
use grid_delete_replica or grid_delete_all instead. This is purely a catalog
operation.

Fields char* path Full logical file path of the file to delete.
GRID_ENEXIST There no such entry in the file catalog.
GRID_EACCES The parent directory does not allow the user to

delete.
GRID_ENAMETOOLONG The pathname is too long.

Errors

GRID_ENOENT A pathname component (parent) does not exist.
Notes

Name grid_rename
Synopsis Rename the logical file name.

char* path Full logical file path of the file to rename Fields
char* newpath Full logical file path of the new file name
GRID_EEXIST There is already an entry in the file catalog

with this name (new name)
GRID_ENEXIST There is no such path in the catalog (existing

name)
GRID_EACCES The parent directory does not allow the user to

remove the old entry or to write the new entry.
GRID_ENAMETOOLONG The pathname is too long.

Errors

GRID_ENOENT A pathname component (parent) does not exist.
Notes

3.16.4.1.5 Symbolic links

Name grid_symlink
Synopsis Create a symbolic link.

char* path Full logical file path of the new file name (i.e.
the symlink)

Fields

char* linkpath Full logical file path of existing file to link to
GRID_EEXIST There is already an entry in the file catalog

with this name (symlink path, first arg)
GRID_ENEXIST There is no such path in the catalog (existing

name to link to, second arg)
GRID_EACCES The parent directory does not allow the user to

write the entry.
GRID_ENAMETOOLONG The pathname is too long.

Errors

GRID_ENOENT A pathname component (parent) does not exist.
Notes

LHC Grid Computing Project DRAFT 34 / 42

3.16.4.1.6 Replica manipulation and entry creation
These methods are all catalog-only methods and do not involve data movement. See above under ‘data
management’ for the methods involving both registration and data movement.

Name grid_register
Synopsis Register a file which exists on a SE.

char* path Full logical file path of the file to register Fields
char* SURL The SURL of the
GRID_EEXIST There is already an entry in the file catalog

with this name
GRID_EACCES The parent directory does not allow the user to

write a new entry here.
GRID_ENAMETOOLONG The pathname is too long.
GRID_ENOENT A pathname component (parent) does not exist.
GRID_EINVSURL The SURL given is invalid
GRID_ESURLNEXIST The SURL does not exist on the SE

Errors

GRID_EDENIED The user is not allowed to register a new
replica.

Notes This corresponds to the RegisterFile() call in AliEn and the replica
manager registerFile method in EDG.

Name grid_list_replicas
Synopsis List all known replicas of a file.

char* path Full logical file path of the file Fields
char* buf Buffer to place next SURL in.
GRID_ENEXIST No such file.
GRID_EOF This is not really an error, it indicates that there are

no more entries to be retrieved. The buffer is
unchanged if EOF is reached.

GRID_ERANGE The buffer is not big enough to store the entry.
There is a field GRID_NAME_MAX that defines the
maximal name length.

GRID_EACCES The user is not allowed to read the path.
GRID_ENAMETOOLONG The pathname is too long.
GRID_ENOENT A pathname component (parent) does not exist.

Errors

GRID_EDENIED The user is not allowed to list replicas.
Notes This corresponds to the replica manager listReplicas method in EDG. It has

similar semantic behavior as the grid_readdir command.

Name grid_unregister

LHC Grid Computing Project DRAFT 35 / 42

Synopsis Un-register a file replica
char* path Full logical file path of the file modify the

registrations
Fields

char* SURL The SURL of the PFN to be unregistered.
GRID_ENEXIST There is no such entry in the file catalog.
GRID_EACCES The user is not allowed to do read the path.
GRID_ENAMETOOLONG The pathname is too long.
GRID_ENOENT A pathname component (parent) does not exist.
GRID_EINVSURL The SURL given is invalid

Errors

GRID_EDENIED The user is not allowed to unregister.
Notes This corresponds to no call in AliEn and the replica manager unregisterFile

method in EDG. It does not remove the LFN. If the last entry has been
removed, the LFN is still not removed, it simply has no replica.

LHC Grid Computing Project DRAFT 36 / 42

3.16.4.2 Sessions
The methods presented here run in a context of a session. This implies that for every call current
directory is defined, as well as root directory.
Many methods derive their options sets from Posix originals, many may support omnipresent grid
options like asynchronous operation, publishing or others. [The details are up for discussion.]

Definitions of some of these grid options follow pseudo EBNF notation:

grid_option:

grid_async_option |
publish_option |
subscribe_option
;

async_option :
 |
 ASYNC_FLAG timout_option return_method action

;

publish_option:
 |
 PUBLISH_FLAG metadata_tags

;

subscribe_option:
 |
 SUBSCRIBE_FLAG metadata_tags

;

Action:
 |
 ACTION_FLAG Method {call(Method(…)};

timout_option:
{default}|

NUMBER SCALE //when timeout occurs in SCALE units
 ;

return_method:
{default acknowledgment} |

LHC Grid Computing Project DRAFT 37 / 42

 EMAIL email_ops |
 QUEUE queueops |
 FILECREATION filecreatops
 ; //this also could be a list (mixture any of these)

Most methods in the complex and basic category can be extended to include sessions.

3.16.4.3 Complex methods
The complex operations involve the operations that do more than just atomic calls to the catalog. They
operate also not just on simple types but on the structures that we define below. The methods
involving session handling also are in the category of complex operations.

3.16.4.3.1 Methods involving metadata
The metadata calls are routed through to the metadata API described below in section 3.17.1.

API call Description
grid_register_with_md Register a file with a set of metadata in one go
grid_fc_add_tag Add a tag of a certain type to a given file
grid_fc_remove_tag Remove the tag from the file
grid_fc_show_tags Show tags and their type associated with a file.
grid_fc_tag_exists Ask whether a tag exists for a given file
grid_fc_set_tag_value Set the value of a given tag of a file
grid_fc_get_tag_value Retrieve the value of a tag of a file
grid_fc_list_files_by_tag List all files having a given value for a tag in a directory,

with offset and number of results to return
grid_fc_get_files_by_tag_search Find all files matching a tag query, starting from a given

directory, with offset and number of results to return.

3.16.4.3.2 Session-specific calls
grid_cwdir
grid_chdir
grid_pwd

3.16.4.3.3 Middleware-Domain API
The job scheduler will need to know all available replicas (SURLs) based on a (set of) LFNs. This
operation has to be very efficient and has to scale very well.
[GUID-related calls – to be included]

3.16.4.4 Structures
[These need to be detailed]
Name grid_session_t
Synopsis: The main predefined user structure is used to store context of the

user session operations, like the current directory. By definition, this

LHC Grid Computing Project DRAFT 38 / 42

is a singleton object per user session.
Used by external programs and users to store context of a user
session.
long sessionId Unique session ID
string currentDirectory Context of the session.
string homeDirectory Same as in u-space in unix

Fields

long sessionLifetime End-of-session lifetime, sessions need
to be able to time out upon client
failures or idleness

Notes Sessions are always tightly coupled with the user’s security object.

Name grid_user_t
Synopsis: The user’s identity object based on the credentials.
optional string userDN The user’s distinguished name
 string[] userRoles Roles the user has been associated with
 long validityTime
 long creationTime
Notes:

Name grid_file_t
Synopsis: The main predefined user structure is used to store information on a

file.
Fields String LFN Full path of the file
 ACL accessControl ACL of the file
 long size File size
 long creationTime Creation time of file
 URI[] SURLlist List of replicas
 URI GUID GUID of file
 URI parent GUID of parent directory
 FCMetadata md Metadata on file
Notes: The fields do not need to be present or filled for some methods that

only deal with simple lookups. There are specific methods that will
fill in the fields of existing FCFile objects.

Name grid_directory_t
Synopsis: Specifies the nature of a directory. It can be a virtual directory or a

‘real’ logical directory.
Fields string path Full path of directory
 URI GUID GUID of directory
 URI parent GUID of parent directory
 ACL accessControl The access control list of the directory

LHC Grid Computing Project DRAFT 39 / 42

 boolean virtual The virtual directory flag
 string query Query string for virtual directories
 long maxsize The maximal number of files in this

directory
 long creationTime Time when directory was created
 long refreshTime Time when directory was last refreshed

(query was rerun for virtual directories
or last written to for logical directories)

Notes:

Name grid_metadata_t
Synopsis All metadata associated with a catalogue entry as returned through

the metadata interface.
Fields long size Number of key-value pairs for the entry
 URI GUID The GUID of the LFN this metadata

belongs to
 string metadata An XML string with all the metadata

filled.

3.16.4.5 Issues, Discussion
Additional types.
There are additional types and structures to be precisely defined, including simple types like
timestamps but possibly complex ones as: machine data (SE), policies, tags, security objects and other
types to be interchanged/reached via other services.

Bulk operations
Bulk operations have been requested by many people to increase performance and to optimise
interaction with the Grid services. A simple grid_execute command might be the solution that takes an
XML document containing all the operations that the user wants to perform in one go. The XML
structure needs to be defined. Open issues involve behaviour on failures, transactional consistency,
session management.

Metadata, HEPCAL DataSets
Hepcal only specifies dataset metadata, which would be. Do we also specify metadata on files?
Virtual directories are the result of a metadata query.

Sessions
Most methods in the complex and basic category can be extended to include sessions, which would
add a session structure to each call to be tracked. This slows things down but of course increases the
functionality and robustness. Should we aim for providing such sessioned versions of all calls?

LHC Grid Computing Project DRAFT 40 / 42

3.17 METADATA CATALOGUE
The Metadata Catalogue Service contains additional information (arbitrary and extensible set of
attributes) about the contents of the available files. These metadata are used for querying the Metadata
Catalogue in the search for the datasets meeting the required criteria.
The metadata catalog interface is defined to serve a very well defined set of tasks. The metadata can be
generic or file-based.

3.17.1 File-based Metadata API
API call Description
grid_md_add_tag Add a tag of a certain type to a given file
grid_md_remove_tag Remove the tag from the file
grid_md_show_tags Show tags and their type associated with a file.
grid_md_tag_exists Ask whether a tag exists for a given file
grid_md_set_tag_value Set the value of a given tag of a file
grid_md_get_tag_value Retrieve the value of a tag of a file
grid_md_list_files_by_tag List all files having a given value for a tag in a directory,

with offset and number of results to return
grid_md_get_files_by_tag_search Find all files matching a tag query, starting from a given

directory, with offset and number of results to return.

3.18 PACKAGE MANAGER
The Package Manager Service is a specialised database for the available software packages. It keeps
track of the package names, versions and their locations in data repositories, usually Storage Elements.
The software package dependencies information is used by installation procedures to insure coherency
between the installed packages. The service provides also the information about the lifetime of the
packages that is used for the clean up of the obsolete versions installed on CE’s.

The packet manager relates to the data services discussed above as such that it can make use of the
LFN logical namespace and of the grid storage to keep all the packets and to make them accessible to
everyone through the grid. There may be a convention to keep all packets in a well-defined namespace
of the LFN tree structure.
To be added at a later phase of the project.

LHC Grid Computing Project DRAFT 41 / 42

4 REFERENCES

[R1] D2.1 Report on Current Technology: Data Access and Mass Storage, EDG Deliverable 2.1, 20

December 2001. http://cern.ch/edg-wp2/docs/DataGrid-02-D2.1-0105-2 0.pdf
[R2] Wolfgang Hoschek, Javier Jaen- Martinez, Peter Kunszt, Ben Segal, Heinz Stockinger, Kurt

Stockinger, Brian Tierney, Data Management (WP2) Architecture Report , EDG Deliverable
2.2, http://edms.cern.ch/document/332390

[R3] Data Management Workpackage, EU DataGrid: D2.2.A1 Addendum to the Data Management
Architecture Report (Covering Testbed Release 2.0), EDG Deliverable 2.2.A1
http://edms.cern.ch/document/374107/addendum.pdf

[R4] Data ManagementWorkpackage, EU DataGrid: D2.5 Components and Documentation for the
Final Project Release. https://edms.cern.ch/file/407063/1/finalDocumentationWP2.pdf

[R5] DataGrid WP1, Definition of Architecture, Technical Plan and Evaluation Criteria for
Scheduling, Resource Management, Security and Job Description, Technical Report, EU
DataGrid Project. Deliverable D1.2, September 2001.
https://edms.cern.ch/file/332413/1/datagrid-01-d1.2-0112-0-3.pdf

[R6] W. Allcock, J. Bester, J. Bresnahan, A. Chernevak, I. Foster, C. Kesselman, S. Meder, V.
Nefedova, D. Quesnal, S. Tuecke; Data Management and Transfer in High Performance
Computational Grid Environments. Parallel Computing, 2002.
http://www.globus.org/research/papers/dataMgmt.pdf

[R7] CASTOR web-site: http://cern.ch/castor
[R8] Gregor von Laszewski, Ian Foster, Jarek Gawor, Peter Lane: A Java Commodity Grid Kit ,

Concurrency and Computation: Practice and Experience, 13(8-9), 2001.
http://www.globus.org/research/papers/vonLaszewski cog-cpe-final.pdf

[R9] Heinz Stockinger, Flavia Donno, Erwin Laure, Shahzad Muzaffar, Peter Kunszt, Giuseppe
Andronico, and Paul Millar. Grid Data Management in Action: Experience in Running and
Supporting Data Management Services in the EU DataGrid Project. In Computing in High
Energy Physics (CHEP 2003), La Jolla, California, March 24-28 2003.

[R10] Diana Bosio, James Casey, Akos Frohner, Leanne Guy, Peter Kunszt, Erwin Laure, Sophie
Lemaitre, Levi Lucio, Heinz Stockinger, Kurt Stockinger,William Bell, David Cameron, Gavin
Mc- Cance, Paul Millar, Joni Hahkala, Niklas Karlsson, Ville Nenonen, Mika Silander, Olle
Mulmo, Gian-Luca Volpato, Giuseppe Andronico, Federico DiCarlo, Livio Salconi, Andrea
Domenici, Ruben Carvajal-Schiaffino, and Floriano Zini.Next-Generation EU DataGrid Data
Management Services. In Computing in High Energy Physics (CHEP 2003) , La Jolla,
California, March 24-28 2003.

[R11] Heinz Stockinger, Asad Samar, Shahzad Muzaffar, and Flavia Donno. Grid Data Mirroring
Package (GDMP). Scientific Programming Journal - Special Issue: Grid Computing,
10(2):121-134, 2002.

[R12] SRM documents. http://sdm.lbl.gov/srm-wg/documents.html
[R13] H. B. Newman, I.C. Legrand, MonaLisa: A Distributed Monitoring Service Architecture, these

proceedings, MOET001
[R14] MONARC. http://www.cern.ch/MONARC/
[R15] http://doc.in2p3.fr/bbftp/
[R16] http://asg.web.cmu.edu/sasl/

LHC Grid Computing Project DRAFT 42 / 42

