
Schema Replication



Some Requirements

Schema Service must be ‘globally’ consistent

Schema Service must continue under duress



Some Use Cases
Schema Service receives a Producer table 
definition which already exists 

Schema Service receives request to add a table 
definition. Table definition already exists within the 
Schema Service. No replication carried out.

Schema Service receives a new Producer 
table definition

Schema Service receives request to add a new table 
definition. Table definition is then copied to each 
Schema Service. Each Schema Service returns an 
acknowledgement. Schema Service receives all replies 
and then returns.



Topologies 

Centralised
Based on Master – Slave relationship

Master Schema writes new table definitions to slaves
Next ‘best’ Schema Service used if failure occurs

Distributed
Based on Registry Replication model

Each user of the Schema API uses the same Schema 
Service
Each Schema Service synchronizes new table 
definitions with neighbouring Schema Services



Centralised Approach

Pros
Naturally fits-in with the global view of the Schema

Cons
How do we ensure all users of the Schema API 
use the same global Master Schema?

Difficult to enforce during an R-GMA restart
Re-election requires lots of co-ordination

Difficult to implement with potential caveats



Distributed Approach

Pros
Simpler to implement 

Avoids complicated re-election algorithm
Code re-use - Registry Replication
User of the Schema API picks any Schema Service 
without having to work out which is the Master

Cons
New tables must be synchronized with all Schema 
Services

Problem also applies to the Centralised approach



Some Implementation Ideas

Republisher wont work
Cant easily synchronize data
Difficult testing and debugging
Dont want to change the Republisher
implementation in case it knackers the Replication

Probably wont know its broken until deployed on a test 
bed with system testing switched on



Some Implementation Ideas cont …

JAXB for fun and profit
You provide the XML Schema and run a Compiler 
that generates a customized java parser. Parser 
reads in XML docs conforming to the Schema and 
then provides a nice memory struct.
Possible to convert the XML directly into a DB 
(using the Apache jaxme)

Will simplify both Registry and Schema 
Replication



Summary

Distributed approach is easier to implement
Fits in nicely with Registry Replication algorithm
Potential for code reuse

Challenging issues with either approach
Have to ensure all back-up Schema Services are 
consistent


