TPC R&D for a Linear Collider

Nabil Ghodbane

CERN-EP

- Introduction:

Why a Linear Collider ? The detector concept TPC as a central tracker

- TPC R&D issues:

Gas amplification systems lon feedback suppression Tracking resolution studies Front End Electronics

-Conclusions

CERN, March 8th 2004

Why a Linear Collider ?

Clearly, today the Standard Model gives a coherent and well tested picture of elementary particles and their interactions

BUT many questions remain unanswered, like:

- \rightarrow Higgs Mechanism for masses
- \rightarrow Origin of masses
- \rightarrow Unification of the three+one forces

• If new particles or new physics exist, first indications should be discovered

at the **Tevatron** (2 TeV pp at Fermilab) or the **LHC** (14 TeV pp at CERN).

- A Linear Collider should then complete the picture by doing precise studies.
 - clean (well defined initial state)
 - flexible (tunable beam energy)
 - precise (high luminosity)

One example of the **synergy** between an e+e- and a pp machine:

1983: discovery of W and Z by UA1 and UA2 at CERN using a p p Collider (270 GeV) **1989-2000**: Precision measurement at LEP (e+e-) (90 – 208 GeV)

Why a Linear Collider ?

Ongoing LC/LHC studies show the synergy of the two machines e.g.

- Higgs searches
- supersymmetric particle searches

Turning Silver into Gold

	LHC	LHC+LC (0.2%)	LHC+LC (1.0%)	for 300 fb ⁻¹ @LHC	
$\Delta m_{ ilde{\chi}_1^0}$	4.8	0.19	1.0	and LC χ_1^0 mass	
$\Delta m_{\tilde{l}\nu}$	4.8	0.34	1.0	precision	
$\Delta m_{ ilde{x}_{ ilde{y}}^0}$	4.7	0.24	1.0		
$\Delta m_{\tilde{q}_L}$	8.7	4.9	5.1		
$\Delta m_{\tilde{b}_1}$	13.2	10.5	10.6		
ombine	ed with	by LHC energy			
	LHC	LHC+LC (0.2%)	LHC+LC (1.0%)	scale systematics	
$\Delta m_{ ilde{g}}$	8.0	6.4	6.5	numbers are preliminary	
$\Delta m_{\tilde{q}_R}$	11.8	10.9	10.9		
	7.5	5.7	5.7		
$\Delta m_{\tilde{b}_1}$					
$\Delta m_{\tilde{b}_1} \\ \Delta m_{\tilde{b}_2}$	7.9	6.3	10.6	preliminary	
$\Delta m_{\tilde{b}_1} \\ \Delta m_{\tilde{b}_2} \\ \Delta m_{\tilde{\ell}_1}$	7.9 5.0	6.3 1.6	10.6 1.9	preiminary	
$\begin{array}{c} \Delta m_{\tilde{b}_1} \\ \Delta m_{\tilde{b}_2} \\ \Delta m_{\tilde{\ell}_L} \\ \Delta m_{\tilde{\chi}_1^0} \end{array}$	7.9 5.0 5.1	6.3 1.6 2.25	10.6 1.9 2.4	preliminary	

Linear Collider concepts

Three ongoing projects...

	TESLA	NLC /GLC-(X)	CLIC	SLC (2000)
L (10 ³⁴ cm ⁻² s ⁻¹)	3.4 5.8	2.0 3.4	2.0 8.0	9.3 x 10⁴
√s (GeV)	500 800	500 1000	500 3000	92
RF Frequency (GHz)	1.3	11.4 (X-Band)	30	2.6
Beamstrahlung (%)	3.2 4.3	4.6 10.2	31	0.03
Gradient (MV/m)	23.4 35	70	172 150	20
bunches/train	2820 4886	196	154	1
∆t bunch (ns)	337 176	1.4	0.67	8 360 000
Repet. Rate (Hz)	5	120	200 100	120
Charges / Bunch (1E10)	2	0.75	0.4	4
σx/σy (nm)	553 / 5	245 / 2.7	43 / 1	1000 / 400

TESLA-Project (DESY):

- **):** Acceleration based on superconductive cavities
 - Technical Design Report March 2001
 - BMBF approved the xFEL project
 - TTF (Tesla Test Facility) phase 2 (2004):
 - 6 cryomodules of 8 x 9-cells each
 - 1 GeV e- beam (= 6.4 nm)

-xFEL construction 2005 (Hamburg, DESY)

Detector R&D for a Linear Collider

Which detector for the LC? a detector like ALEPH or SLD ?

Higher energies

• More complex final states: up to <u>8 partons</u> in the final state $e^+e^- \rightarrow H^+ H^- \rightarrow t b t b$

Artistic view of the TESLA detector

- Large Lorentz Boost ⇒ Higher particle densities in jets:
 e.g. 1/mm² in vertex detector
- Background processes for new physics searches will be different:

e⁺e⁻ qq 330/h e⁺e⁻ WW 930/h e⁺e⁻ tt 70/h

Bunch and time structure is different

Clearly an R&D effort for detector is needed!

- SLD : $\delta(IP) < 8 \oplus 33/(p \sin^{3/2}\theta) \mu m$ (CCD)

- Total Drift time 50 μs = 160 BX 80000 hits in TPC (physics+BG) (BG mainly neutrons ~5600 n/BX)

- 1.2MPads+20MHz 0.1% occupancy
- large number of spatial points:
 200 (z, r, φ) per track (dE/dx, p_t)

TPC as the central tracker: Gas amplification: wires

For the drifting electron amplification several solutions are considered:

Wires

Principle

- primary electrons
- amplification
- signal, induced on the pads
- gating plane for ion feedback reduction

Advantages

```
- known technology (e.g. TOPAZ, ALEPH, DELPHI, etc...)
```

But

- high magnetic field
- ion feedback needs gating after every bunch crossing?
- E x B effects

TPC as the central tracker: Gas amplification: GEM

TPC as the central tracker : ongoing R&D activities

- to meet the Physics goals
- to design a TPC as a central tracker at a Linear Collider Several R&D groups...

LC TPC R&D Groups (1)

"DESY-Physics-Review-Committee" Groups

Aachen Berkeley LBNL Carleton/Montreal/Victoria DESY/Hamburg Karlsruhe Cracow MIT MPI-Munich NIKHEF Novosibirsk Orsay/Saclay Rostock St. Petersburg

10/12/2003

Ron Settles DESY/MPI-Munich Asian LC Workshop Mumbai 15-17 Dec 2003

LC TPC R&D Groups (2)

Other USA groups

BNL Chicago/Perdue/3M Chicago/Perdue Cornell (UCLC) MIT (LCRD) Temple/Wayne State (UCLC) Yale

Asia
 Interest expressed

10/12/2003

R.Settles, Asian LC workshop '03

TPC as the central tracker : ongoing R&D activities

Several issues are addressed by the TPC study group (For more details see note LC-DET-2002-008: http://www-flc.desy.de/lcnotes)

- Gas amplification system:
 - GEM or (and) MicroMegas or wires
 - Ion feedback

Readout pad shape:

- Pad geometry studies (chevrons, squares, etc...)
- Spatial, two track and dE/dx resolution
- Gas mixture:

•

٠

٠

- Drift velocity
- Aging and effects on the field cage design
- **Electronics:**
- sampling and digitization on endplates, etc..
- behavior in Test Beams
- Simulation and software development

TPC : ongoing R&D activities: gain stability

A typical TPC setup e.g. DESY:

- Use of cosmic muons
- two scintillators as triggering signal
- maximal drift length (1m)
- double GEM structure
- gas mixture: $Ar:CH_4:CO_2 = 93:5:2$
- electronics à la ALEPH: (Fastbus technology TPD+FVSBI)
- readout sampling at 11 MHz.
- 64 readout channels
- signal / noise > 40

Gain stability

Goal: to reach a dE/dx measurement with 5% precision a gain stability homogeneity at 1% level

(One DESY TPC setup)

TPC : ongoing R&D activities: ion feedback studies

Two sources of ions in a TPC:

- ions created in the TPC drift volume by primary ionization
- ions created during the avalanche

Ion feedback is a crucial issue at TESLA:

- to which level can it be suppressed ?
- How does the ion feedback evolve with high magnetic field ?

MicroMegas (Saclay/Orsay)

Ion Feedback does not depend on the magnetic field for MicroMegas

TPC : ongoing R&D activities: ion feedback studies

A Magnet Test Facility is provided by DESY to the TPC study groups.

Parameters:

- up to 5 Tesla
- diameter: 28 cm
- length: 187 cm

Setup: three GEM structure: Fe source Ion feedback decreases with B (at TESLA, <1% for 4 T)

TPC : ongoing R&D activities: simulations

- A need to better understand several aspects of MPGD
- Simulation of a GEM with and without magnetic field:
 - Systematic studies like e.g. e- collection efficiency
- Amplification properties simulation:
 - gas choice (carrier, effect of quencher)
 - optimal gap

Several drawbacks for electron collection using MPGD (GEM or MicroMegas):

- for small drift distances, charge cloud may be collected on a single pad since reduction of transverse diffusion due to high magnetic field
- center of gravity method not efficient

smaller pad size.
 use specially shaped pads i.e. other geometries like chevrons for a better charge sharing between neighbor pads.

- increase size of charge cloud using resistive foils before the pads.

TPC : ongoing R&D activities: pad geometries and resolution

Resolution vs drift length:

- better charge sharing for chevrons
- at small drift distances, chevrons give a better resolution than square pads.
- needs a better understanding (work in progress)

TPC : ongoing R&D activities: use MEDIPIX chip as anode

Problem:

Performance of drift chambers equipped with GEM or Micromegas foils is limited by the size of the anode readout pads.

Idea:

Ideally, each GEM or Micromegas hole is associated with a single channel including a low-noise preamp, one or more discriminators and time stamp circuitry.

H.Van der Graaf, TPC meeting feb. 04 (NIKHEF)	Drift
	Space
	GEM /MicroMegas
	MediPix CMOS pixel sensor 256 x 256 square pixels
0 20 40 60 80 100 120 140 160 190 200 229 240 256	with pitch 55 µm x 55 µm

TPC : ongoing R&D activities: Field Cage Studies

To get an expertise, several TPCs are designed: The field cage structure is a major issue: keep the material budget LOW (3% X₀)

MPI/DESY/KEK TPC (wires, GEMs, MicroMegas)

Field cage structure of the TPC built at DESY (192 channels)

TPC : ongoing R&D activities: test beam studies

J.Kaminski, ECFA workshop, Montpellier '03

Behavior of TPC prototypes using GEMs and MicroMegas have already started:

Karlruhe: test beam with a 9GeV hadron beam at CERN:

- drift velocity
- spatial resolutions
- track distortions

Behavior with an e- beam (6GeV) Soon...

TPC : ongoing R&D activities: Front End Electronics

Up to now, very little effort has been made for the Front End Electronics

To readout the TPC, several institutes make use of the ALEPH electronics

ALEPH preamplifier (16 channels)

mannan (2x16 channels)

Or use the STAR TPC electronics

TPC : ongoing R&D activities: Front End Electronics

Another approach for the FEE is being investigated: - for each PAD, the information to be read is:

- charge (for dE/dx) and arrival time of the charge cloud.
- -> instead of FADCs, use of TDCs combined with a Charge to Time Converter: ASDQ chip.

Arguments:

- cheaper (1.2x 10⁺⁶ channels)
- reduced Data flow (t, $\Delta t)$
- power consumption reduced

t = arrival time $\Delta t \sim collected charge$

A.Kaukher, (Rostock U.)

Summary

A Linear Collider is <u>clearly</u> the next biggest project in HEP after LHC

Strong R&D activities to develop a Time Projection Chamber as the main Tracker at the future linear collider:

- Several institutes are joining their efforts to achieve the different milestones (see e.g. LC-DET-2002-008).

To know more about:

the different Linear Collider projects: http://www.linearcollider.org

the ongoing R&D for the detector:

http://www.desy.de/flc

the ECFA-DESY TPC study:

http://alephwww.mppmu.mpg.de/~settles/tpc/welcome3.html

Big THANK to the DESY TPC group for providing some material for this talk!

Slides available on http://www.cern.ch/ghodbane