CMS Service Challenge 3 Planning

Lassi A. Tuura Northeastern University

Service Challenge Context

- CMS schedule at high level
 - * LHC start in April 2007
 - * Last major data challenge DC06 in summer/autumn 2006
 - Magnet test end of 2005, cosmic challenge beginning of 2006
 - * Service challenge 3: July December 2005
- Compact computing and software planning overview
 - * Baseline system assumes thin grid middleware, experiments significant stake-holders with major input to operation and choices made
 - * Full computing system essentially being put into operation now
 - * New event data model / framework being deployed this year
- Currently identified top three issues and/or missing functionality
 - * Priorities and share allocation in both workload and data management
 - Data management aiming at first solution this summer
 - * Comprehensive monitoring to understand resource usage
 - To guide re-prioritisation and policy changes
 - * Operational stability and babysitting required

Integration Program of Work

Establish an environment where we can work and test components

- Integration cycles of approximately three months
- Reasonably complete testbed environment: smaller-scale replica of the entire system, complete set of services expected to be always present
- Measure performance of important components: data transfers, data serving, workload management components (resource broker, computing elements)
- Becomes next production service
- Success is mandatory
 - Main focus on alternatives with reasonable expectation of success
 - * We cannot afford total failure on any significant component
 - Clarify long-term goals and temporary solutions
 - Example: Which data serving solutions are temporary solutions for current problems, which are the long-term strategy? Make clear to decision makers!

Service Challenge 3: Test Facility

- Exercise roughly realistic scenario, but small amount of data
 - * Data produced centrally and distributed to Tier 1 centres (MSS)
 - * Strip jobs at Tier 1 produce analysis datasets
 - Approximately 1/10th of original data, also stored in MSS
 - * Analysis datasets shipped to Tier 2 sites for analysis, published locally
 - * Tier 2 sites produce MC data, ship to Tier 1 MSS
 - May not be the local Tier 1
 - Transfers between Tier 1 sites
 - Analysis datasets, 2nd replica of raw
- Volumes + sites
 - ✤ 50 TB from CERN T1 to at least two T1s, plus smaller ones (~10 TB)
 - * 5 TB to T2s, at least one per T1
 - * 5-10 TB T1/T1 analysis dataset transfers
 - * 50 TB T1/T1 2nd raw replica transfers

Service Challenge 3: Services I

- Expect to treat this as a continuous testbed environment
 - * All services available at all times, we should be able to execute integration tests while throughput tests take place
 - * Expect reasonably complete testbed early enough
 - With reasonable computing resources
- Main points of focus
 - Structured data flow using PhEDEx transfers
 - * Transfer and data serving throughput
 - Simultaneous data import, export and analysis
 - * Production job throughput at Tier 2 sites
 - * Exercising job pull model
 - * O(10M) events / month continued (to be verified!)
- Specific services: next slides
 - * Expect sites to negotiate with us what is used where

Service Challenge 3: Services II

- Data transfers: PhEDEx; to be installed at each participating site
 - * Underlying transfers expected to be either SRM or globus-url-copy
 - * If sites feel strongly about EGEE FTS, should discuss use with us *now*
- File catalogue
 - * POOL API, local, relational; MySQL / Oracle default; LFC and Globus RLS are an option, sites should contact CMS if they expect to use these
 - * We do not expect to test EGEE Fireman
- General environment
 - * Data serving infrastructure -- dCache, Castor or xrootd
 - * Computing element, job submission (UI)
 - * Output harvesting for transfers (CMS agents, can use UI-type machine)
 - * CMS software installation and publishing into the information system
 - Bookkeeping / monitoring databases for production (CMS BOSS, MySQL)
 - * Above-mentioned file catalogue
 - PubDB or successor

Service Challenge 3: Schedule

- July: SC3 throughput phase
 - * T0/T1/T2 simultaneous import/export
 - * To and from tape at T1s *application level end-to-end transfers*
 - * Real files, real storage
 - * Expect to test other things on testbed at the same time
- September: service phase 1 modest throughput
 - * Demonstrate bulk data processing, simulation at T1, T2s
 - Requires software, job submission, output harvesting, monitoring, ...
 - Not everything everywhere, something reasonable at each site
- November: service phase 2 modest throughput
 - * Phase 1 + continuous data movement
 - * New task-queue based job system for production
 - Already in September if available then
 - * Precursor for next production service

More Information

CMS computing

- * David Stickland (david.stickland@cern.ch)
- * Lothar Bauerdick (bauerdick@fnal.gov)
- * Computing TDR: http://cmsdoc.cern.ch/cms/cpt/tdr
- SC3 wiki: http://uimon.cern.ch/twiki/bin/CMS/SWIntegration
- Data management
 - * cms-dm-developers@cern.ch
- Workload management
 - * cms-computing-wm@cern.ch
- Production
 - * cms-production@cern.ch
- Data transfers

Stefano Lacaprara

Tony Wildish

Peter Elmer

Lassi Tuura, Tim Barrass

- * http://cern.ch/cms-project-phedex
- * cms-phedex-developers@cern.ch