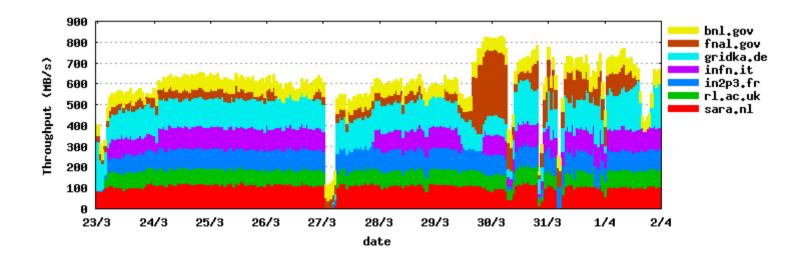
LCG Storage Workshop

"Service Challenge 2 Review"

James Casey, IT-GD, CERN CERN, 5th April 2005

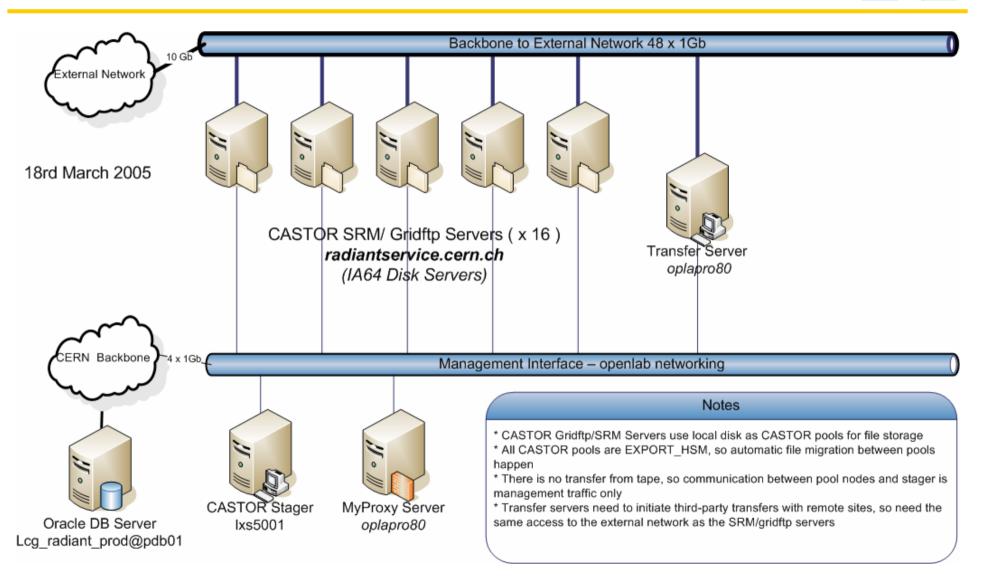
- Reminder of
 - Targets for the Service Challenge
 - Plan and timescales
- CERN Tier-0 Configuration
- Tier-1 Configuration
- Throughput phase of Service Challenge 2
 - Transfer Software
 - Monitoring
- Outages and problems encountered
- SC2 single site tests


- "Service Challenge 2"
 - Throughput test from Tier-0 to Tier-1 sites
 - Started 14th May
- Set up Infrastructure to 7 Sites
 - NL, IN2P3, FNAL, BNL, FZK, INFN, RAL
- 100MB/s to each site
 - 500MB/s combined to all sites at same time
 - 500MB/s to a few sites individually
- Goal : by end March, sustained 500 MB/s at CERN

- >600MB/s daily average for 10 days was achieved -Midday 23rd March to Midday 2nd April
 - Not without outages, but system showed it could recover rate again from outages
 - Load reasonable evenly divided over sites (give network bandwidth constraints of Tier-1 sites)

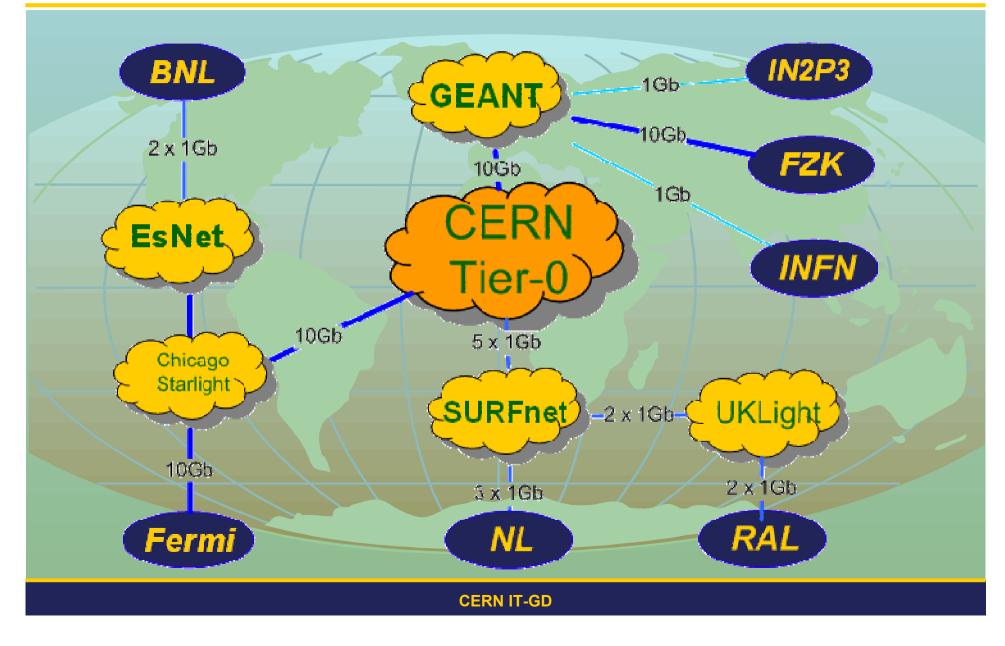
Site	Average throughput (MB/s)	Data Moved (TB)
BNL	61	51
FNAL	61	51
GridKA	133	109
IN2P3	91	75
INFN	81	67
RAL	72	58
SARA	106	88
TOTAL	600	500

- Service Challenge 1 was on an experimental hardware setup
 - 10 HP IA64 nodes within the opencluster
 - Not a standard service
 - No LEMON monitoring
 - No operator coverage
 - No standard configuration
- Plan was to move to a "standard" configuration
 - IA32 "worker nodes" running CASTOR SRM/gridftp
 - Still serving data from local disks
- Also to move to "production" networking
 - The opencluster is a test and research facility
 - Again, non-monitored network hardware



- This didn't all go to plan...
 - First set of 20 IA32 worker nodes weren't connected to right network segments
 - They were installed, configured and tested before this was discovered
 - Replacement nodes (20 IA32 disk servers) were supplied too late to get installed, configured and tested before SC2
- Had to fallback to openlab IA64 nodes for SC2
 - These weren't connected to the production network on their inward facing interface (towards CERN LAN)
 - Added 10 extra IA64 nodes to system 16 in total were used for data transfer in SC2

- Small set of storage configurations
 - Most sites ran "vanilla" Globus gridftp servers
 - SARA, INFN, IN2P3, FZK
 - The rest of the sites ran dCache
 - FNAL, BNL, RAL
- Most sites used local or system-attached disk
 - FZK used SAN via GPFS
 - FNAL used production CMS dCache, including tape
- Load-balancing for most plain gridftp sites was done at the RADIANT layer
 - INFN deployed "n-1" DNS alias highest loaded machine was replaced in alias every 10 minutes
 - Alleviated problems see with pure round-robin on gridftp servers

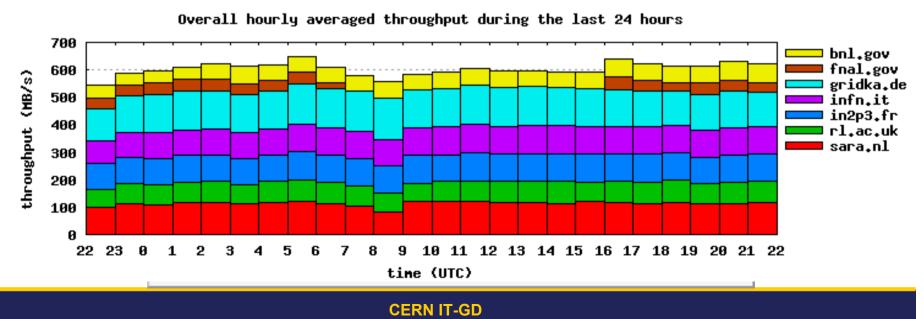


- Sites are in the middle of their upgrade path to LCG networking
 - 10Gb will be the norm now it's more like 1Gb
 - All this is heavily tied to work done in the LCG T0-T1 networking group
- Most sites were able to provided dedicated network links
 - Or at least links where we could get most of the supplied bandwidth
 - IN2P3, BNL still were on shared links with a bit more congestion
 - Needed to be dealt with differently
 - Upped the number of concurrent TCP streams per file transfer

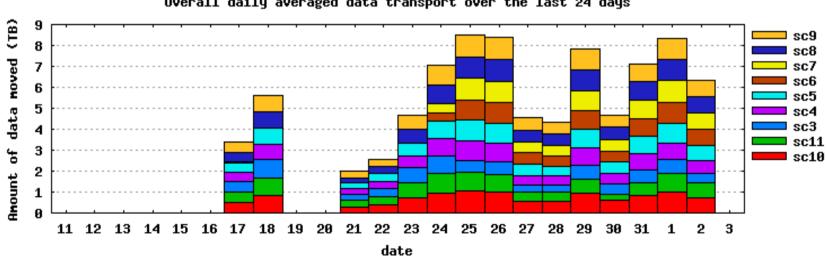
- LCG RADIANT Software used to control transfers
 - Prototype software interoperable with the gLite FTS
 - Plan is to move to gLite FTS for SC3
 - Initial promising results presented at Lyon SC Meeting in Feb.
 - More details in LCG Storage Workshop tomorrow
 - Run on a single node at CERN, controlling all Tier-0 to Tier-1 "channels"
 - Transfers done via 3rd-party gridftp
- `radiant-load-generator' was used to generate transfers
 - Configured for each channel to load-balance where appropriate
 - Specifies number of concurrent streams for a file transfer
 - This was normally =1 for a dedicated link
 - Ran from cron to keep transfer queues full

- Control of load on a channel via number of concurrent transfers
- Final Configuration:

#Chan : State : Last Active	:Bwidth: Files: From : To
FZK :Active :05/03/29 15:23:47	7 :10240 :5 :cern.ch :gridka.de
IN2P35:Active :05/03/29 15:16:32	2 :204 :1 :cern.ch :ccxfer05.in2p3.fr
IN2P33:Active :05/03/29 15:20:30) :204 :1 :cern.ch :ccxfer03.in2p3.fr
INFN :Active :05/03/29 15:23:07	7 :1024 :8 :cern.ch :cr.cnaf.infn.it
IN2P32:Active :05/03/29 15:21:46	5 :204 :1 :cern.ch :ccxfer02.in2p3.fr
FNAL : Inactiv: Unknown	:10240 :0 :cern.ch :fnal.gov
IN2P3 :Active :05/03/29 15:23:40) :204 :1 :cern.ch :ccxfer01.in2p3.fr
IN2P34:Active :05/03/29 15:18:00) :204 :1 :cern.ch :ccxfer04.in2p3.fr
BNL : Inactiv: Unknown	:622 :24 :cern.ch :bnl.gov
NL :Active :05/03/29 15:22:54	4 :3072 :10 :cern.ch :tier1.sara.nl
RAL :Active :05/03/29 15:23:09	9:2048:12:cern.ch:gridpp.rl.ac.uk



- RADIANT controlled transfers were pure gridftp only
 - SRM components did not get developed in time
 - FNAL and BNL did SRM transfers by pulling from their end
 - FNAL used PhEDEx to pull data
 - BNL used simple driver scripts around srmCopy command
 - BNL started some radiant-controlled gridftp transfers too
 - Used the exact transfer nodes as the rest of the sites (radiantservice.cern.ch)
- SRM interactions helped debug issues with dCache SRM and DNS load-balanced SRM/gridftp servers
 - Fixed java DNS alias problems seen at FNAL
 - Did not work smoothly for most of the challenge with FNAL mode of operation
 - Main problem solved and fix in place by end of throughtput phase
 - How to do srmCopy's with 1000s of files is still not well understood

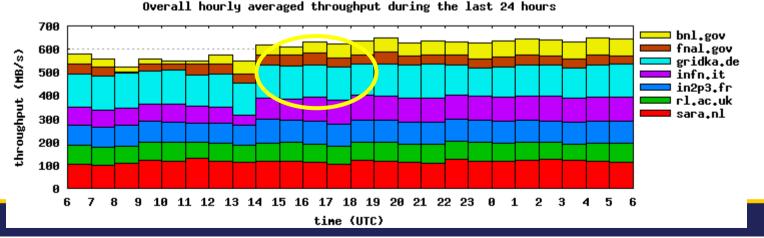

- MRTG Graphs of network usage out of cluster
- LEMON monitoring of cluster
 - CPU usage
 - Disk usage
 - Network usage
- Gridftp logfile monitoring

- Gridftp Monitoring (http://challenge.matrix.sara.nl/SC/)
- Main monitoring tool used during the SC2
 - Hourly throughput per site
 - Hourly throughput per host
 - Daily throughput per site
 - Daily throughput per host

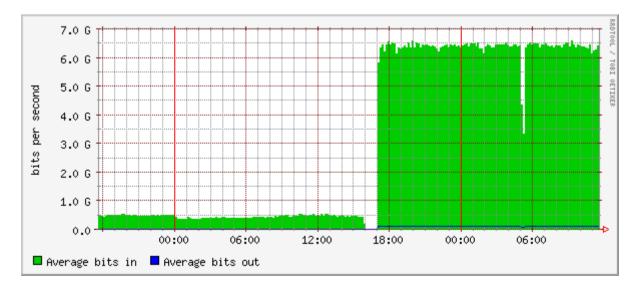
Overall daily averaged data transport over the last 24 days

- Progress page kept in SC wiki of
 - All tunings made to the system
 - All outages noted during the running
 - Any actions needed to cleanup and recover service
 - <a href="http://service-radiant.web.cern.ch/service-radiant/service-radiant/web.cern.ch/service-radiant/web.cern.c
- No real 24x7 service in place
 - Manual monitoring of monitoring webpages
 - Best-effort restart of service
 - Also at Tier-1 sites problems communicated to service challenge teams, but this was not a 24x7 coverage

- Capacity in the cluster meant that we could recover from one site not being active
 - Other sites would up their load a bit automatically due to gridftp stream rates increasing
 - Only thing that killed transfers were CERN outages
- We did not do any scheduled outages during the SC
 - No procedures for starting a schedule outage
 - If we had done one to move to managed network infrastructure, it would have removed some of the scheduled ones



- Mxproxy instability
 - Locks up under high load
 - Understood by developers of myproxy
 - Can be handled by watchdog job
 - Particular problem on restart after network outage
- CERN LAN Network outages
 - Had 2 long-ish outages (~12 hours)
 - Issue with being on non-managed network hardware
- Database quota limit hit
 - Tablespace was being monitored but not quota
 - Quota monitoring added
- Database load problems
 - Caused intermittent drops in throughput due to new jobs not being scheduled
 - In-memory hob queues in the transfer agents meant these we're a big problem


- An issue raides at Lyon SC Meeting
- "load-balanced" gridftp servers
 - Not really load-balanced with round-robin no awareness of state or behaviour of other nodes
 - Can end up with all transfers going to one host, with all others idle
- CNAF put in place "worst one out" load-balancing
 - Heaviest loaded node is taken out of alias every 10 minutes
 - Smoothed out load

- Being scheduled right now
 - Sites can pick days in next two weeks when they have the capacity
 - 500MB/s to disk
 - 60MB/s to tape
- FNAL is running 500MB/s disk tests right now

- SC2 met it's throughput goals
 - An improvement from SC1
- We still don't have something we can call a service
 - But monitoring is better
 - We see outages when they happen, and we understood why they happen
 - First step towards operations guides
- Some advances in infrastructure and software will happen before SC3
 - gLite transfer software
 - SRM service more widely deployed
- We have to understand how to incorporate these elements

