
## LCG Storage Management Workshop - Goals and Timeline of SC3

Jamie Shiers, CERN-IT-GD April 2005

### LCG Deployment Schedule



## LCG Service Challenges - Overview

- LHC will enter production (physics) in April 2007
  - Will generate an enormous volume of data
  - Will require huge amount of processing power
- LCG 'solution' is a world-wide Grid
  - Many components understood, deployed, tested..
- But...
  - Unprecedented scale
  - Humungous challenge of getting large numbers of institutes and individuals, all with existing, sometimes conflicting commitments, to work together
- LCG must be ready at full production capacity, functionality and reliability in less than 2 years from now
  - Issues include h/w acquisition, personnel hiring and training, vendor rollout schedules etc.
- Should not limit ability of physicist to exploit performance of detectors nor LHC's physics potential
  - Whilst being stable, reliable and easy to use

# Why Service Challenges?

### <u>To test Tier-0 $\leftarrow$ > Tier-1 $\leftarrow$ > Tier-2 services</u>

- Network service
  - Sufficient bandwidth: ~10 Gbit/sec
  - Backup path
  - Quality of service: security, help desk, error reporting, bug fixing, ..
- Robust file transfer service
  - File servers
  - File Transfer Software (GridFTP)
  - Data Management software (SRM, DCache)
  - Archiving service: tapeservers, taperobots, tapes, tapedrives, ...
- Sustainability
  - Weeks in a row un-interrupted 24/7 operation
  - Manpower implications: ~7 fte/site
  - Quality of service: helpdesk, error reporting, bug fixing, ...
- > <u>Towards a stable production environment for experiments</u>

Kors Bos – Presentation to LHCC, March 7 2005

## Whither Service Challenges?

### First discussions: GDB May - June 2004

- May 18 Lessons from Data Challenges and planning for the next steps (+ Discussion) (1h10') (<u>transparencies</u>)
- June 15 Progress with the service plan team (10') ( document )
- Other discussions: PEB June 2004
  - June 8 Service challenges proposal (40') ( <u>transparencies</u>)
  - June 29 Service challenges status and further reactions (30')
     (<u>transparencies</u>)
- May 2004 HEPiX
  - LCG Service Challenges Slides from Ian Bird (CERN)
- My involvement: from January 2005
  - Current Milestones: <u>http://lcg.web.cern.ch/LCG/PEB/Planning/deployment/Grid%20Deploy</u> <u>ment%20Schedule.htm</u>

# **Key Principles**

- Service challenges results in a <u>series</u> of services that exist in <u>parallel</u> with <u>baseline production</u> service
- Rapidly and successively approach production needs of LHC
- Initial focus: core (data management) services
- Swiftly expand out to cover <u>full spectrum</u> of production and analysis chain
- Must be as realistic as possible, including end-end testing of key experiment <u>use-cases</u> over extended periods with recovery from <u>glitches</u> and <u>longer-term</u> outages
- Necessary resources and commitment pre-requisite to success!
- Effort should not be under-estimated!

### SC1 Review

### SC1 did not successfully complete its goals

- Dec04 Service Challenge I complete
  - mass store (disk) mass store (disk)
  - 3 T1s (Lyon, Amsterdam, Chicago) (others also participated...)
  - 500 MB/sec (individually and aggregate)
  - 2 weeks sustained
  - Software; GridFTP plus some scripts

### We did not meet the milestone of 500MB/s for 2 weeks

- We need to do these challenges to see what actually goes wrong
  - A lot of things do, and did, go wrong
- We need better test plans for validating the infrastructure before the challenges (network throughput, disk speeds, etc...)

>

## SC1/2 - Conclusions

- Setting up the infrastructure and achieving reliable transfers, even at much lower data rates than needed for LHC, is complex and requires a lot of technical work + coordination
- Even within one site people are working very hard & are stressed. Stressed people do not work at their best. Far from clear how this scales to SC3/SC4, let alone to LHC production phase
  - Compound this with the multi-site / multi-partner issue, together with time zones etc and you have a large "non-technical" component to an already tough problem (example of technical problem follows...)
  - But... the end point is fixed (time + functionality)
  - We should be careful not to over-complicate the problem or potential solutions
- And not forget there is still a humungous amount to do...
- (much much more than we've done...)

## Service Challenge 3 - Phases

### High level view:

- Throughput phase
  - 2 weeks sustained in July 2005
    - "Obvious target" GDB of July 20<sup>th</sup>
  - Primary goals:
    - 150MB/s disk disk to Tier1s;
    - 60MB/s disk (T0) tape (T1s)
  - Secondary goals:
    - Include a few named T2 sites (T2 -> T1 transfers)
    - Encourage remaining T1s to start disk disk transfers
- Service phase
  - September end 2005
    - Start with ALICE & CMS, add ATLAS and LHCb October/November
    - All offline use cases except for analysis
    - More components: WMS, VOMS, catalogs, experiment-specific solutions
  - Implies production setup (CE, SE, ...)

## SC3 - Will We Succeed?

- Throughput goals will almost certainly be achieved
- But at what cost in manpower and hardware?
- Are we really converging on goal of **production services?** 
  - Monitoring, alarms, procedures, all working 24x7?
  - If this was a plane, would you fly in it?
- The test let's try with some of the key people on vacation and set what happens...
  - Well OK, they can 'pretend' to be on vacation...

### SC3 - Production Services

- SC3 is a relatively small step wrt SC2 (throughput!)
- We know we can do it technology-wise, but do we have a solution that will scale?
- Let's make it a priority for the coming months to streamline our operations
- And not just throw resources at the problem...
  - which we don't have...
- Whilst not forgetting 'real' goals of SC3...

### SC3 - Service Phase

- It sounds easy: "all offline Use Cases except for analysis"
- And it some senses it is: these are well understood and tested
- So its clear what we have to do:
  - Work with the experiments to understand and agree on the experiment-specific solutions that need to be deployed
  - Agree on a realistic and achievable work-plan that is consistent with overall goals / constraints
- Either that or send a 'droid looking for Obi-Wan Kenobi...

### Service Phase - Priorities

- Experiments have repeatedly told us to focus on reliability and functionality
- This we need to demonstrate as a first step...
- But cannot lose sight of need to pump up data rates whilst maintaining production service - to pretty impressive "DC" figures

## SC3 on

- SC3 is **significantly** more complex than previous challenges
- It includes experiments s/w, additional m/w, Tier2s etc
  - Proving we can transfer dummy files from A-B proves nothing
  - Obviously need to show that basic infrastructure works...

### Preparation for SC3 includes:

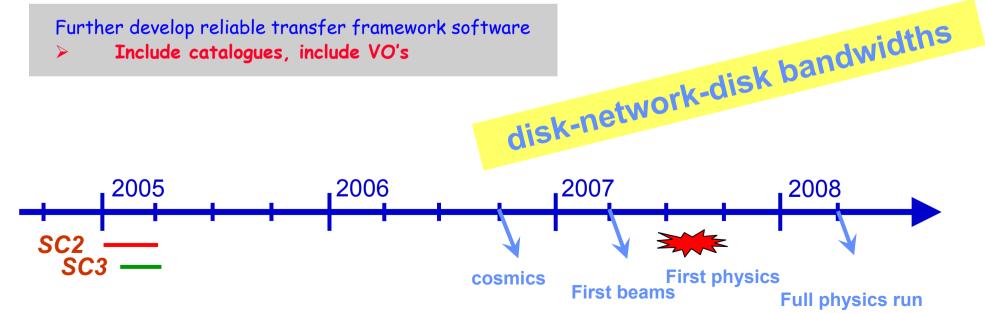
- Understanding experiments' Computing Models
- Agreeing involvement of experiments' production teams
- Visiting all (involved) Tier1s (multiple times)
- Preparing for the involvement of 50-100 Tier2s

### Short of resources at all levels:

- "Managerial" discussing with experiments and Tier1s (visiting)
- "Organizational" milestones, meetings, workshops, ...
- "Technical" preparing challenges and running CERN end 24 x 7 ???

## 2005 Q1 - SC3 preparation

Prepare for the next service challenge (SC3)


-- in parallel with SC2 (reliable file transfer) -

Build up 1 GByte/s challenge facility at CERN

The current 500 MByte/s facility used for SC2 will become the *testbed* from April onwards (10 ftp servers, 10 disk servers, network equipment)

Build up infrastructure at each external centre

Average capability ~150 MB/sec at a Tier-1 (to be agreed with each T-1)

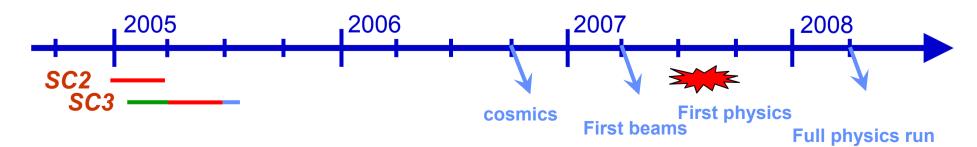


# 2005 Q2-3 - SC3 challenge

#### SC3 - 50% service infrastructure

- Same T1s as in SC2 (Fermi, NIKHEF/SARA, GridKa, RAL, CNAF, CCIN2P3)
- Add at least two T2s
- "50%" means approximately 50% of the nominal rate of ATLAS+CMS

Using the 1 GByte/s challenge facility at CERN -


- Disk at TO to tape at all T1 sites at 60 Mbyte/s
- Data recording at TO from same disk buffers
- Moderate traffic disk-disk between T1s and T2s

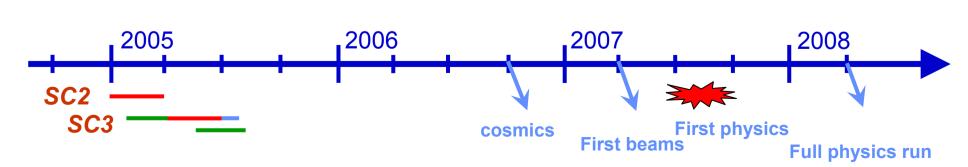
Use ATLAS and CMS files, reconstruction, ESD skimming codes (numbers to be worked out when the models are published)

Goal - 1 month sustained service in July

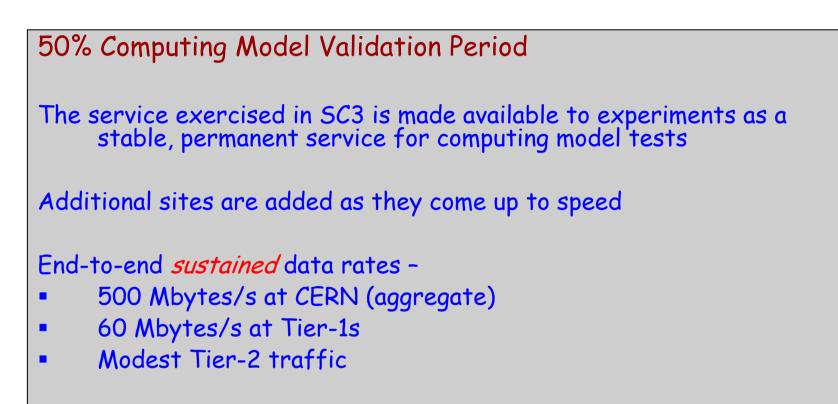
- 500 MBytes/s aggregate at CERN, 60 MBytes/s at each T1
- end-to-end data flow peaks at least a factor of two at T1s
- → network bandwidth peaks ??

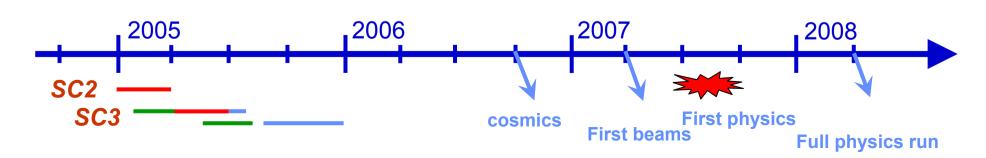





### 2005 Q2-3 - SC3 additional centres

In parallel with SC3 prepare additional centres using the 500 MByte/s test facility


• Test Taipei, Vancouver, Brookhaven, additional Tier-2s


Further develop framework software

Catalogues, VO's, use experiment specific solutions



### 2005 Sep-Dec - SC3 Service





## SC3 - Milestone Decomposition

- File transfer goals:
  - Build up disk disk transfer speeds to 150MB/s
    - SC2 was 100MB/s agreed by site
  - Include tape transfer speeds of 60MB/s
- Tier1 goals:
  - Bring in additional Tier1 sites wrt SC2
    - PIC and Nordic most likely added later: SC4?
- Tier2 goals:
  - Start to bring Tier2 sites into challenge
    - Agree services T2s offer / require
    - On-going plan (more later) to address this via GridPP, INFN etc.

### Experiment goals:

- Address main offline use cases *except* those related to analysis
  - i.e. real data flow out of TO-T1-T2; simulation in from T2-T1

### Service goals:

- Include CPU (to generate files) and storage
- Start to add additional components
  - Catalogs, VOs, experiment-specific solutions etc, 3D involvement, ...
  - Choice of software components, validation, fallback, ...

# SC3 - Experiment Goals

- Meetings on-going to discuss goals of SC3 and experiment involvement
  - Focus on:
    - First demonstrate robust infrastructure;
    - Add 'simulated' experiment-specific usage patterns;
    - Add experiment-specific components;
    - Run experiments offline frameworks but don't preserve data;
      - Exercise primary Use Cases *except* analysis (SC4)
    - Service phase: data is preserved...

### Has significant implications on resources beyond file transfer services

- Storage; CPU; Network... Both at CERN and participating sites (T1/T2)
- May have different partners for experiment-specific tests (e.g. not all T1s)

### <u>In effect, experiments' usage of SC during service phase = data challenge</u>

Must be **exceedingly clear** on goals / responsibilities during each phase!

 $\geq$ 

# SC3 Preparation Workshop

- This (proposed) workshop will focus on very detailed technical planning for the whole SC3 exercise.
- It is intended to be as interactive as possible, i.e. not presentations to an audience largely in a different (wireless) world.
- There will be sessions devoted to specific experiment issues, Tier1 issues, Tier2 issues as well as the general service infrastructure.
- Planning for SC3 has already started and will continue prior to the workshop.
- This is an opportunity to get together to iron out concerns and issues that cannot easily be solved by e-mail, phone conferences and/or other meetings prior to the workshop.
- Is there a better way to do it? Better time?

## SC3 - Experiment Involvement Cont.

### Regular discussions with experiments have started

- ATLAS: at DM meetings
- ALICE+CMS: every ~2 weeks
- LHCb: no regular slot yet, but discussions started...
- Anticipate to start first with ALICE and CMS (exactly when TDB) ATLAS and LHCb around October
  - T2 sites being identified in common with these experiments
     More later...
  - List of experiment-specific components and the sites where they need to be deployed being drawn up
    - Need this on April timeframe for adequate preparation & testing

## Experiment plans - Summary

### SC3 phases

- Setup and config July + August
- Experiment software with throwaway data September
- Service phase
  - aTLAS Mid October
  - ALICE July would be best...
  - LHCb post-October
  - CMS July (or sooner)
- Tier-0 exercise
- Distribution to Tier-1
- •

# A Simple T2 Model

### N.B. this may vary from region to region

- Each T2 is configured to upload MC data to and download data via a given T1
  - In case the T1 is logical unavailable, wait and retry
    - MC production might eventually stall
  - For data download, <u>retrieve</u> via <u>alternate</u> route / T1
    - Which may well be at lower speed, but hopefully rare
  - Data residing at a T1 other than 'preferred' T1 is transparently delivered through appropriate network route
    - T1s are expected to have at least as good interconnectivity as to T0
- Each Tier-2 is associated with a Tier-1 who is responsible for getting them set up
  - Services at T2 are managed storage and reliable file transfer
    - DB component at T1; user agent also at T2
- IGBit network connectivity shared (less will suffice to start with, more maybe needed!)

### Prime Tier-2 sites

### For SC3 we aim for

| Site          | Tier1        | Experiment  |
|---------------|--------------|-------------|
| Bari, Italy   | CNAF, Italy  | CMS         |
| Turin, Italy  | CNAF, Italy  | Alice       |
| DESY, Germany | FZK, Germany | ATLAS, CMS  |
| Lancaster, UK | RAL, UK      | ATLAS       |
| London, UK    | RAL, UK      | CMS         |
| ScotGrid, UK  | RAL, UK      | LHCb        |
| US Tier2s     | BNL / FNAL   | ATLAS / CMS |

Responsibility between T1 and T2 (+ experiments)

### CERN's role limited

- Develop a manual "how to connect as a T2"
- Provide relevant s/w + installation guides
- Assist in workshops, training etc.
- Other interested parties: Prague, Warsaw, Moscow, ..
- Also attacking larger scale problem through national / regional bodies
  - GridPP, INFN, HEPiX, US-ATLAS, US-CMS

| Coordinating Body   | Comments                                                                                                                                                                     |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INFN                | A workshop is foreseen for May during which<br>hands-on training on the Disk Pool<br>Manager and File Transfer components<br>will be held.                                   |
| GridPP              | A coordinated effort to setup managed storage and<br>File Transfer services is being managed<br>through GridPP and monitored via the<br>GridPP T2 deployment board.          |
| ASCC Taipei         | The services offered by and to Tier2 sites will be<br>exposed, together with a basic model fo<br>Tier2 sites at the Service Challenge<br>meeting held at ASCC in April 2005. |
| НЕРіХ               | A similar activity will take place at HEPiX at FZK<br>in May 2005, together with detailed<br>technical presentations on the relevan<br>software components.                  |
| US-ATLAS and US-CMS | Tier2 activities in the US are being coordinated<br>through the corresponding experimen<br>bodies.                                                                           |
| Triumf              | A Tier2 workshop will be held around the time o<br>the Service Challenge meeting to be held<br>in Triumf in November 2005.                                                   |
| CERN                | One or more workshops will be held to cover thos<br>Tier2 sites with no obvious regional o<br>other coordinating body, most likely en<br>2005 / early 2006.                  |
|                     | INFN GridPP ASCC Taipei HEPiX US-ATLAS and US-CMS Triumf                                                                                                                     |

### Conclusions

- To be ready to fully exploit LHC, significant resources need to be allocated to a series of <u>Service Challenges</u> by all concerned parties
- These challenges should be seen as an <u>essential</u> on-going and <u>long-term</u> commitment to achieving production LCG
- The countdown has started we are already in (pre-)production mode
- Next stop: 2020